EFI

IP and Software Library for
FPGA-based Time Tag Processing PicoQuUANT

EFI - External FPGA Interface

Programming Reference Handbook

Document version 2.0.1

PicoQuant GmbH EFI Programming Reference

Table of Contents

R [0 o (3T 1o PO PRRR 2
2. Getting started with the External FPGA INtErface..........ccocuiiii it 3
2.1. Performance and utilization numbers of the example design..........cccccoeiciiiiiiiie e 3
2.2. System Requirements of the example desSigN...........cooiiiiiiiiii e 3
2.3, Setting UP the HArAWAIE..........oooiiiiiieeee e e e e e e e s e et ae e e e e e e e e aans 3
2.4, Generating the GatEWarre...........oiiiii ittt st e e e e e nes 4
2.5, TeStiNG the SYSIEM....coi it e et e e st e e e e sre e e e s enneeeesenssaeee s 4
2.6. Modifying the EXample DeSIgN........ccoi it 4
2.7, SIMUIAtING the DESIGN.....eeiiiiiiiie et s e e e s e e s e e e 5
2.8. Porting the Design t0 Other FPGAS...........euieiiiee et e e e e e e 5
3. External FPGA Interface IP REfErENCe..........cocuiiiiiiiiiiie e 6
3.1. TCLK Domain Status SIgNalS........ccoiuuiiiiiiiiiiieiiieie et e e e ennneee s 7
K 14 1Y S (=Y o T OSSR PTPRR 8
B TR N I G T8 4= | o SR 9
3.4, LOOPDACK STrEAM......co et e et e e e e e e e e e e e e e e e e e eabaanaaaaaeaaaans 9
3.5. Loopback Stream Status SigNalS..........cceiiiiiiiiiiiiieie e a e e e 9
3.6. SYSCLK Domain Status SigNalS..........cciiiiiiiiiiiiiie ittt 10
3.7. USER _REG INTEIMACE.uueiiiiiii ittt e e e e e e e e e e e e e e e s e e eaabaaeeeeaaaeeeaaans 10
R T 1@ 2T = £ TSRO 11
4. Software Programming GUILE.........coouiiiiiiiiie ettt e e st e e s anbe e e e s snne e e e s snneeeas 12
ST € 1o 117 | Y PRSP 13
LT =T F- | =T 1 USROS 15
ST I ©o o)V 4T | o | S S EP 15
I I = To (=10 = U PUPRPN 15

Page 1

PicoQuant GmbH EFI Programming Reference

1. Introduction

Picoquant provides cutting edge time tagging systems with USB interfaces. Its new integrated design
provides a flexible number of input channels at reasonable cost and allows innovative measurement
approaches. The timing circuits allow high measurement rates with an excellent time resolution and a record
breaking deadtime of 650 ps. The modern USB 3.0 interface provides very high throughput as well as ‘plug
and play’ installation. The input triggers are adjustable for a wide range of input signals providing
programmable level triggers for both negative and positive going signals. These specifications qualify our
time tagging devices for use with most common single photon detectors such as Single Photon Avalanche
Diodes (SPADs), Superconducting Nanowire Single Photon Detetors (SNSPD), and Photomultiplier Tube
(PMT) modules (via preamplifier). The use of the measurement inputs is very flexible. In fluorescence lifetime
applications the sync channel is typically used as a synchronization input from a laser. The other inputs are
then used for photon detectors. In coincidence correlation applications all inputs including the sync input can
be used for photon detectors.

The USB 3 interface, together with its TTTR measurement modes, enables a great performance and
flexibility trade-off for most use cases. However, when targeting very high counts per second or large
experimentation setups with up to 64 channels, it may not provide enough bandwidth. In some setups it may
also be undesirable to only process data in the standerd TTTR file formats. Finally, the computer attached to
the USB interface must keep up to the data generated by the time tagging device, which can be a challenge
when running complex real-time data analysis algorithms.

The External FPGA Interface (EFI) for your time tagging device addresses those challenges. It uses one or
more high speed serial link cables to transfer data to an external FPGA. On such a board custom processing
and I/O can be performed with virtually unlimited flexibility. This solves the above mentioned problems, as (1)
high speed serial links increase the bandwidth by an order of magnitude, (2) event data can be processed in
a raw format and (3) complex processing algorithms can be performed in real-time.

There are two options for using EFI: using the backside connector (EFI REAR) or the front side connector
(EFI SFP) with an SFP module. The backside connector provides high-bandwidth data streaming with T2/T3
or RAW data, while the front side SFP connector allows for easy and flexible T2/T3 data streaming. You can
choose the interface based on your needs. Some time tagging devices feature only the front side SFP port
(EFI SFP), see table 3. Note that streaming data via the front SFP port disables the White Rabbit feature.

In order to streamline the development of EFI solutions, PicoQuant provides an initial set of gateware and
software IP. Custom logic, which can be written in VHDL, Verilog or any other Xilinx Vivado supported
language, only needs to be connected to a set of high-level data stream interfaces. The user can choose to
either receive the raw timing data or the pre-processed TTTR T2 or T3 mode time tags. Through a loopback
interface, custom data generated by the FPGA can be transmitted back trough the USB3 interface and be
read out by a user application using PicoQuant’s programming library functions. The FPGA logic can be
easily verified against PTU files using the supplied simulation library. Deep customization of the gateware IP
is supported, as all required sources for the external FPGA are freely available.

The first part of this programming reference describes how to get started with the demo design. It is
recommended to read this part in its entirety before starting development with the External FPGA Interface.
The second part of this document contains a reference of the interface semantics of the gateware, how to
use the simulation library and a documentation of the External FPGA Interface specific functions of the time
tagging device software programming library.

Page 2

PicoQuant GmbH

EFI Programming Reference

2. Getting started with the External FPGA Interface

Compared to software analysis of time series data, FPGA based processing has many advantages. How-
ever, every FPGA based system requires thorough understanding and careful consideration of the design pa-
rameters in order to make good use of it. In order to jump-start the development with the EFI, this chapter is

in the format of a tutorial that familiarizes the user with the capabilities of the system.

In this tutorial we first show how to set up the time tagging device with the FPGA development boards. Fur-
thermore, a Vivado example project shows how to access the TTTR data streams in the FPGA. The tutorial
thus also serves as a good starting point for developing custom EFI-based solutions. We therefore strongly

recommend starting with this tutorial when you first use the External FPGA Interface.

The following table shows PicoQuant's Time Tagger device support for EFI.

Harp Device EFI SFP EFI REAR

MultiHarp 150 X -
MultiHarp 160 X X
HydraHarp 500 S/M X -

EFI Compability

21.

Performance numbers of the example design

The following table lists the maximum event rates and the latency depending on the configuration of the time
tagging device. The latency is measured by subtracting the arrival time of the event pulse at the time tagging
device from the arrival time of the corresponding TTTR tag in the external FPGA.

Mode

Measurement Maximum Event Rate Maximum Event Rate Latency
Configuration EFlI REAR EFIl SFP
Histogramming Not supported Not supported Not supported

T2 Mode

200M events/second

156M events/second

4.5 psto 5.0 s

T3 Mode

200M events/second

156M events/second

45pusto55us

T2 Direct Mode

78M events/second for the Sync
+

200M events/second shared
among each horizontal row of 8
inputs

= total maximum 1.678G
events/second

Not supported

Sync: 1.7 ys to
1.8 us

Others: 0.8us to
1.2 us

In the table below, you will find a rough estimation of the logic consumption for the reference design
implemented on the example boards.

Resource Utilization EFI REAR Utilization EFI SFP
LUT 14212 8645

LUTRAM 1360 1022

FF 20573 115621

BRAM 21 20

10 13 8

GT 10

BUFG 14 9

Page 3

PicoQuant GmbH EFI Programming Reference

MMCM 1 2

2.2. System Requirements of the example design
In order to follow this guide the following requirements should be met:
- The External FPGA Interface 2.0.1 source package downloaded and unpacked

- A Windows 10 x64 computer with the time tagging device device driver and programming library in-
stalled

¢ A C/C++ compiler that supports at least C++14, such as gcc (using Mingw-w64), clang or MSVC
- A signal source for the time tagging device for testing purposes (e.g. PicoQuant PDL 800-D)
- Development board + dependencies from the table below

Development [EFI REAR |EFI SFP |Vivado Additional required parts
Board Version
Genesys 2 X 2022.2 EFI FMC Adapter
License for the XC7K325T FPGA
appropriate EFI cable
AC701 X 2022.2 Two compatible SFP+ modules and a matching cable
ZCU104 X 2022.2 Trenz TEFO008 FMC SFP adapter
two compatible SFP+ modules and a matching cable

This guide assumes understanding of the programming library and time tagging device documentation.
Reading and understanding the development board's reference manual is required before proceeding.

If you are using the EFI SFP, you can use one of the tested SFP+ modules from the table below.

SFP Module Manufacturer Description

TL-SM5110-SR TP-link 10G Laser based fiber transmitter
CAB-10GSFP-P0.5M Highfiber DAC (direct access cable, copper cable 30cm)
SFP-10G-SR-C OEM 10G Laser based fiber transmitter
UACC-OM-SFP28-SR Ubiquiti 25G Laser based fiber transmitter

HP PN 721000-001 HP 10G Laser based fiber transmitter

2.3. Setting up the Hardware
Turn on the time tagging device and connect the USB3 cable to the computer;

2. Connect your development board through the appropriate connector (EFI SFP or EFI REAR) of your
time tagging device using a suitable cable;

3. Connect the USB JTAG and USB UART cables from your development board to the PC and turn on
the board.

2.4. Generating the Gateware

There are two options to generate the bitstream for the reference design. The first one is to use the pre-gen-
erated project files. This is the easiest and fastest option to get started. The second option is to generate the
project yourself. For the second approach PicoQuant provides scripts to help you generate and build the

project from scratch. You can also use pre-existing project file for building the bitstream. Please refer to the
README . md in the project folder.

Page 4

PicoQuant GmbH EFI Programming Reference

2.5.

2.6.

Ensure that you have all the license files installed correctly by your FPGA in the Xilinx license
manger, if not the build process will fail.

Install the board files for your FPGA Board, go to Vivado-~Tools—Vivado Store-Boards

Extract the External FPGA Interface source package to a destination of your choice or start the
build.tcl script.

Extract the gateware sources in the <package location>/gateware/ folder.

Open the Vivado project located in the folder <package location>/gateware/pr3j name. Itis
recommended to not nest Vivado projects to deep into the filesystem, as Windows may be con-
strained by path length limitations.

Generate the bitstream or use the prebuilt one.

Open the device manager, select auto connect and program the FPGA.

Testing the System

Ensure that the driver and library of your time tagging device are installed correctly and that the sys-
tem can connect to the device by opening the application Software.

Connect your signal sources to the time tagging device. For mere testing these can be generator sig-
nals e.g. the sync output from a PDL 800. For T2 mode measurements it is sufficient to connect this
signal to the sync input. This is a good and simple starting point. For T3 mode measurements you
also need a signal on one of the input channels of the time tagging device. For details on the two dif-
ferent modes please refer to the corresponding manual.

Go to <package location>\software\API example and compile the C code. Detailed instruc-
tions are provided in the device programming guide.

Run the generated executable.
Check if the software raises any errors and if the reported count rates are correct.

Upon pressing a key in the console window the software will start a measurement for 50 millisec-
onds. The generated data is sent to external FPGA and count rates per channel are calculated in
FPGA logic. Those are periodically sent back to the host using the loopback interface. The returned
data is displayed in the console window. If T2 or T3 loopback modes are used, the T2 or T3 records
are returned instead.

Make sure that all combinations of channels, external FPGA mode and loopback mode that you
require are working and returning sensible count rates.

This concludes the setup and getting started guide for the External FPGA Interface.

Modifying the Example Design

The example design is a good starting point for building your own data processing solution with the EFI. It is
therefore recommended to familiarize yourself with VHDL code in the Vivado project and the C code for the
host application.

The relevant source files for the example design are usr _application example.vhdand *top.vhd ,
where * represents one of the possible combinations of FPGA boards and connection paths. The usr_appli-
cation_example file contains all the logic interfacing the EFI. This is where later you want to accommodate
your custom processing logic. The Top-file connects the user example and the EFI IP. When extending and
adding VHDL files you should make sure to include the pg extfpga lib library and pg_extfpga pkg
package imports for all contexts.

The EFI uses an embedded Microblaze controller for various tasks. It is recommended to use the ELF file
that is supplied with the example project, as the inner workings of the EFI are not guaranteed to remain iden-
tical between revisions of this platform. However, should the need to recompile or modify the ELF file arise,
you can find the sources used to build the file in the folder <package location>/gateware/sdk.

Page 5

PicoQuant GmbH EFI Programming Reference

2.7. Simulating the Design

The EFI design package contains a VHDL library for large scale simulation of the TTTR processing logic. The
code can be found in <package location>/gateware/hdl src/pg mhsim lib/. This library con-
tains a simulation model of the time tagging device, that can be connected directly to the top level entity of
your FPGA design. Photon and marker events can be fed into the simulation model using ptusim files. Using
the CPP file located in pg mhsim lib/sim/ptusimitis possible to convert PTU files into PTUSIM files.
Start the simulation using ModelSim by clicking "Run Simulation" in Vivado. The idea of using PTU files is
that you can easily perform tests using real measured data.

2.8. Porting the design to other FPGAs

2.8.1. EFI FMC Connector (EFI REAR)

The EFI design package can be easily ported to other FPGA development boards and systems, as all re-
quired source are included and can be modified freely. It will require some degree of work on the internals of
the package, depending on how similar the desired FPGA is to one of the mentioned boards. The following
lists the potentially required changes depending on what kind of FPGA you want to use.

FPGA boards that contain the XC7K325T FPGA:
- The XDC file must be changed to reflect the different pinout.

- A matching EFI-FMC connector is required. You can fabricate your own using the schematics in-
cluded in the hardware folder, or you can contact PicoQuant support for assistance.

- Note that at least 2 GTX transceivers are required for the base functionality. If you wish to use the
T2DM channels, then one GTX transceiver is required per channel.

FPGA boards that contain a different Xilinx FPGA:

» You must ensure that the “Aurora 8b/10b” IP-Core is supported for your FPGA. If the transceivers of
the FPGA are not “7 Series-GTX”, you must change the portion of the EFI-Design that connects the
transceivers with the Aurora-IP. You need to regenerate the Aurora-IP.

- The XDC file must be changed to reflect the different pinout.

- A new EFI-FMC connector may be required. You can fabricate your own using the schematics in-
cluded in the hardware folder, or you can contact PicoQuant support for assistance.

- Note that at least 2 GTX transceivers are required for the base functionality. If you wish to use the
T2DM channels, then one transceiver is required per channel.

FPGA from different vendors:
- Ensure that the device supports the PHY protocol outlined in the Aurora 8b/10b standard.

» You can use the provided VHDL-Code and simulation environment as reference to implement your
endpoint for the External FPGA Interface.

2.8.2. SFP Connector (EFI SFP)

Many modern FPGA development boards feature an SFP+ connector, simplifying the process of interfacing
with EFI. Migrate sources to another FPGA using SFP+ by following the steps below.

« Verify that your board has an SFP+ connector
« Verify that the GT reference clock can generate a 6.25 Gbit/s line rate, (125 MHz, 156.25 MHz work)
o check which clock is connected to the GT reference clock pins

o Use the IP generator Aurora 8B/10B, enter the line rate of 6.25 Gbit/s, and verify that your refer-
ence clock appears in the list of possible reference clocks

- Adapt the XDC file to your boards pinout

Page 6

PicoQuant GmbH EFI Programming Reference

Boards not featuring an SFP+ connector

If your board lacks an SFP+ connector but has an FMC connector, you can use an SFP+ adaptor card such
as the TEF0008-02 from Trenz Elektronik. If using a different adapter card, modify the pin configuration ac-
cordingly.

- verify that the at least one SFP data pair (rx + tx) is routed through the FMC connector to your GT
o (6,C7,C2,C3 (RXP, RXN, TXP, TXN)
o A2, A3, A22, A23 (RXP, RXN, TXP, TXN)
o AB, A7, A26, A27 (RXP, RXN, TXP, TXN)
o A10, A11, A30, A31 (RXP, RXN, TXP, TXN)
- make sure the GT reference clock on the adapter card is routed from the FMC connector to your GT
o D4, D5 (GBTCLKO_P, GBTCLKO N) 156.25 MHz

Page 7

PicoQuant GmbH EFI Programming Reference

3. External FPGA Interface IP Reference

The External FPGA Interface manages all communication with the time tagging device transparently. The
user can focus on implementing the data processing and 1/O functions that are specific to her use case. The
primary interfaces of the EFI are the high speed tag streams for T2, T3 and T2DM channels, the USB3 loop-
back interface and the user register configuration interface. The IP is provided as VHDL source.

The following image and table list all the signals and their properties for the EFI IP. The behavior of the sig-
nals is defined in the subsequent subchapters.

TCLK domain
200MHz
TRSTN

> EXT_FPGA_MODE >
[

> EXT_LOOPBACK_MODE >
[

> MEASUREMENT ACTVE >

I
> SYSLINK_STATUS >
T2DM_DATA
T2R DATA

T3R_DATA

> LOOPBACK_STREAM VALD >
I

> LOOPBACK_STREAM_LAST >
I

> LOOPBACK_STREAM DATA >
I

> LOOPBACK_T3R DATA >

> LOOPBACK T2R DATA >

SYSCLK SYSCLK domain
100MHz
SYSRSTN
> USER REG ADDR >
[
> USER REG RDATA > > USER REG WDATA >
I |
> USER REG RD READY > > USERREGWR >

> USERREGRD >

E GBTCKL > async IO

> M EXT_MGT_RX > > M EXT_MGT_TX >
[

—>DBG_UART.TXD >
I

> LOOPBACK_READY >

[

> LOOPBACK_FIFO_NEW_FLAGS >
I

> LOOPBACK_FIFO_FILL_LEVEL >

external_fpga_interface_genesys2.vhd

Page 8

PicoQuant GmbH

EFI Programming Reference

Signal Name Signal Type Direction | Domain |Description

TCLK std_logic IN TCLK 200 MHz clock
TRSTN std_logic IN TCLK Active-low reset
EXT_FPGA_MODE std_logic_vector(1:0) |OUT TCLK Defined in chapter 3.1
EXT_LOOPBACK_MODE std_logic_vector(1:0) ouT TCLK Defined in chapter 3.1
MEASUREMENT_ACTIVE std_logic ouT TCLK Defined in chapter 3.1
T2DM_DATA (EFI REAR only) t2dm_rec_vec(0:8) ouT TCLK Defined in chapter 3.2
T2R_DATA t2r_rec ouT TCLK Defined in chapter 3.3
T3R_DATA t3r_rec ouT TCLK Defined in chapter 3.3
LOOPBACK_STREAM_DATA std_logic_vector(31:0) |IN TCLK Defined in chapter 3.4
LOOPBACK_STREAM_VALID std_logic IN TCLK Defined in chapter 3.4
LOOPBACK _STREAM_LAST std_logic IN TCLK Defined in chapter 3.4
LOOPBACK_READY std_logic ouT TCLK Defined in chapter 3.4
LOOPBACK_T2R_DATA t2r_rec ouT TCLK Defined in chapter 3.4
LOOPBACK_T3R_DATA t3r_rec ouT TCLK Defined in chapter 3.4
LOOPBACK_FIFO_NEW_FLAGS |std_logic ouT TCLK Defined in chapter 3.5
LOOPBACK_FIFO_FILL_LEVEL |std_logic_vector(15:0) |OUT TCLK Defined in chapter 3.5
SYSLINK_STATUS system_link_status_rec | OUT TCLK Defined in chapter 3.6
SYSCLK std_logic IN SYSCLK | 100 MHz clock
SYSRSTN std_logic IN SYSCLK |Active-low reset
USER_REG_ADDR std_logic_vector(31:0) |OUT SYSCLK |Defined in chapter 3.7
USER_REG_WDATA std_logic_vector(31:0) |OUT SYSCLK |Defined in chapter 3.7
USER_REG_RDATA std_logic_vector(31:0) |IN SYSCLK |Defined in chapter 3.7
USER REG_WR std_logic ouT SYSCLK |Defined in chapter 3.7
USER_REG RD std_logic ouT SYSCLK |Defined in chapter 3.7
USER_REG_RD_READY std_logic IN SYSCLK |Defined in chapter 3.7
GBTCLK[0/1]_[P/N] std_logic IN Async IO |Defined in chapter 3.8
M_EXT_MGT_TX][P/N] std_logic_vector(1:0) |OUT Async IO |Defined in chapter 3.8
M_EXT_MGT_RX[P/N] std_logic_vector(9:0) |IN Async IO |Defined in chapter 3.8
DBG_UART_TXD std_logic ouT Async IO | Defined in chapter 3.8

3.1.

TCLK Domain Status Signals

The TCLK domain contains three status output signals. The external FPGA can process data coming from
the time tagging device in a variety of formats. The T3 and T2 data formats represent the data in an identical
way as to how they would be received in the host software and how they would appear in a PTU file. The
T2DM, short for T2 Direct Mode format, uses a variation of the T2 format. Using the EXT_FPGA_MODE sig-
nal, the external FPGA logic can adapt to different timetag sources. It is encoded as follows:

EXT_FPGA_MODE(1:0) | Name Description

00 efi_mode_off The external FPGA is not used.

01 efi_mode_t2raw The external FPGA receives data In the T2DM format.
10 efi_mode_t2r The external FPGA receives data In the T2 format.

11 efi_mode_t3r The external FPGA receives data In the T3 format.

Page 9

PicoQuant GmbH EFI Programming Reference

The external FPGA can send data from to the PC using the USB interface of the time tagging device. This is
referred to as the loopback stream. Different data sources can be set up for this stream. The
EXT_LOOPBACK_MODE signal is encoded as follows:

EXT_LOOPBACK_MODE(1:0) Name Description

00 efi_loopback_off | The loopback interface is turned off.

01 efi_loopback_user | The loopback interface transports the
LOOPBACK_DATA data.

10 efi_loopback t2 | The loopback interface transports LOOPBACK_T2R
data.

11 efi_loopback t3 | The loopback interface transports LOOPBACK_T3R
data.

The signals EXT_FPGA_MODE and EXT_LOOPBACK_MODE are always valid and reflect the parameters
supplied to the MH ExtFPGASetMode () MHLib call.

The MEASUREMENT_ACTIVE signal informs the external FPGA function whether a measurement is going
on or not. It is always valid.

3.2. T2DM Stream

The T2DM stream data is the key feature for running the External FPGA Interface at maximum performance.
It uses many serial high speed links to connect the external FPGA to the time measurement logic as directly
as possible. Using T2DM, it is possible to process more than 1.6G events/second when using the EFI REAR
with 64 channels. It also reduces the latency between measurement and availability in the FPGA by 80%
compared to the T2/T3 streams. See performance table in section 2.1.

The streams of the T2DM-Mode are based on the semantics of T2-Mode. Please refer to the User’'s Manual
for details on this mode. The following only explains the encoding differences to T2-Mode.

In T2DM mode the user logic interfaces with 3 to 9 streams. Stream zero only carries the events from the
sync input, as well as the marker inputs. All other streams carry the events of 8 inputs each, with stream one
containing events from the inputs 1 to 8, stream two containing events from the inputs 9 to 16, and so on.

The T2DM events are encoded in the t2dm_rec type. There are four different groups of code points in this
encoding, which are represented by the t2dm tag type. Using the get t2dm tag type () call the tag
type of a t2dm_rec can be easily queried. The following table lists the different possible encodings and their
meanings.

wr ovfl [channel(5:0) |get_t2dm_tag_type Description

0 Jany |any OTHER_TAG Invalid
00_00_00 Event on local Channel 1. Never used on stream 0.
00_00_01 Event on local Channel 2. Never used on stream 0.
OX_XX_XX |EVENT TAG Event on local Channels 3-31 correspondingly. Never
used on stream 0.
0 01_11_11 Event on local Channel 32. Never used on stream 0.
10_00_00 Event on the Sync Channel. Only used on stream 0.
1 Marker 4 event when A = 1, Marker 3 event when B = 1
10_AB_CD MARKER_TAG Marker 2 event when C = 1, Marker 1 event when D =
1. Only used on stream O.
11_00_00 Start of measurement for all channels on this stream.
11_00_01 End of measurement for all channels on this stream.
- OTHER_TAG
00_00_00 -
] Unused
11_11_11 OVERFLOW_TAG One overflow for all channels on this stream.

Page 10

PicoQuant GmbH EFI Programming Reference

EVENT_TAGs represent events on the time tagging device inputs. The tag value shall be interpreted as the
tag value in the T2 format. The encoding of the channel uses a concept called local channel. For the time
tagging device, given the stream number S and the local channel L the input number | can be computed by
[=(S-1)*8+L.

MARKER_TAGs represent events on the Marker inputs 1 to 4. If two Marker events are triggered at the same
time, they can be encoded in a single t2dm_rec.

OTHER _TAGs represent unused tag codes and miscellaneous status information, such as the start and end
points of measurements for all channels of the corresponding stream. The start and end tags can be used to
find the timetag start value at the beginning or end of a measurement.

OVERFLOW_TAGs represent an overflow similarly to how the T2 uses them. The overflow is only valid for
the channels of the corresponding stream. Only one overflow is encoded by a OVERFLOW_TAG.

An array of t2dm_rec types is denoted by the type t2dm rec vec and may have arbitrary dimensions. The
following table lists the fields, their meaning and their corresponding bit widths of the t2dm rec type.

Field name Bit width Description

wr 1 Indicates whether the record is valid

ovfl 1 Indicates special record values

channel 6 Indicates channel and special record values
tag 17 Encodes the time tag of the event

3.3. T2/T3 Stream

The T2 and T3 modes transport data streams in a format that is described in the corresponding device man-
ual. Another good starting point for understanding these formats are the PTU file demos installed together
with the provided device application software. The event records are encoded using the t2r rec and

t3r_ rec correspondingly. A record is only valid when wr is 1.

The streams may present valid data that does not fit any encoding outlined in the PTU file documentation. In
the interest of forward compatibility, a correct user logic implementation shall ignore such records.

3.4. Loopback Stream

The loopback stream offers an easy to use and high performance data channel from the user logic to the
USB interface of the time tagging device. Data written to the loopback stream can be read on the connected
PC using the MHLib MH ReadFiFo () function, just like any other T2/T3 measurement, produced by a time
tagging device. Although the data is transferred in this way, it should not be stored in a regular PTU file, as
the user defined data format may not conform to the PTU file definition.

There are 4 settings for the loopback mode. The T2 and T3 loopback modes can be used for manipulating
and filtering of TTTR data streams. The user loopback mode offers the highest degree of flexibility, as arbi-
trary byte streams can be transferred to the host. For details on what modes are available see chapter 3.2.
For details on how to set up a loopback mode see chapter 4.

The user loopback stream interface is based on the AXI-4 Stream interface. For details on the AXI-4 stream
protocol see https://developer.arm.com/documentation/ihi0051/latest/. In the example code data beats are
grouped by the EFI into chunks of 128 Bytes. If a data beat has the LAST signal set, then the current group is
padded with 0xA5 Bytes until it is contains 128 Bytes. The user loopback stream is not available during that
time. The code inside the usr application.vhd is just an example you can add custom protocols as per
specific needs.

3.5. Loopback Stream Status Signals

The loopback stream data that is transmitted from the external FPGA into the time tagging device is aggre-
gated there into a FIFO. If the connected PC is not fast enough to consume data at the rate the external
FPGA is producing it the FIFO buffer may overspill.

Page 11

https://developer.arm.com/documentation/ihi0051/latest/

PicoQuant GmbH EFI Programming Reference

In order to prevent this, the external logic can observe the LOOPBACK FIFO FILL LEVEL signal. It shall be
interpreted as a 16 bit unsigned twos complement value. It represents the ratio of the current FIFO fill level
against the maximum FIFO fill level. A value of 0 indicates the array is empty and the value 2*16-1 indicates
the array is full.

The LOOPBACK FIFO FILL LEVEL is only valid when the LOOPBACK FIFO NEW FLAGS signal is ‘1".

Note that the FIFO fill level is not reported to the external FPGA instantaneously, but instead represents the
fill ratio at the time it was measured in the time tagging device. The user logic must therefore take into ac-
count the data that is in flight between the external FPGA and the time tagging device at the time of measure-
ment. It is therefore strongly recommended to leave a safety margin of at least 2% in the FIFO.

3.6. SYSCLK Domain Status Signals

The system link status_rec record encodes error and status of the 9 serial links. These signals are al-
ways valid and only presented to the user logic for debugging purposes. For details refer to the definition of
the record in the extfpga 1ib main package.

3.7. USER_REG Interface

The USER REG interface is a 32 bit wide register interface for configuration purposes. It has an address
space for 2*' words of 32 bits each.

For a write operation the EF| sets the USER_REG_ADDR and USER_REG_WDATA to the desired values and as-
serts USER_REG_WR. The address and data may be set ahead of time or on the same cycle as
USER_REG_WR. For a single write the USER_REG_ADDR may be asserted for more than one cycle. See the
following figure for a valid example write transaction:

SYSCLK ."."

USER_REG _ADDR 77/} 0x00000000 Ji 7
USER_REG_WR / J \
USER_REG_WDATA X WRITEDATA [/ X

For a read operation the EFI sets the USER _REG_ADDR to the desired value and asserts USER_REG_RD. The
address may be set ahead of time or on the same cycle as USER_REG_RD. The user logic must then set the
USER REG RDATA to the desired value and assert USER_RD READY. The returned data can be set ahead of
time or on the same cycle as USER _RD READY. For a single transaction the USER_RD_READY may only be
set for one cycle. The following figure shows a valid example read transaction:

SYSCLI{| | | | | | | .-lg | | |

USER_REG_ADDR 7 0x00000000 Ji)7

USER_REG RD / J/ \

USER_REG_RDATA X READ DATA [/ \ %

USER_REG_RD_READY fFr—

If too much time passes between the start and the completion of transaction, then the host software will ter-
minate the transaction and raise an error. The user logic should therefore attempt to complete transactions
as fast as possible.

Page 12

PicoQuant GmbH EFI Programming Reference

3.8. 1/0 Signals

The EFI contains several signals that refer to physical BELs and pins in the FPGA. Those signals should be
passed through to the top level entity and constrained using XDC commands. The example project contains
the XDC commands for the boards in the file <package location>/gateware/hdl src/constrs/
<prj name>/constr <prj name>.xdc. For other FPGAs the correct commands will be different.

Page 13

PicoQuant GmbH EFI Programming Reference

4. Software Programming Guide

Five functions of the time tagging device programming library are dedicated to the operation of the external
FPGA interface. Those functions can be used at any point after initialization. This chapter contains a docu-
mentation for the C/C++ functions only. The function prefix shown is an example for the MultiHarp. If you are
using the HydraHarp 500, use the prefix HH500 _instead. The functionality remains the same; only the prefix
differs.

int MH ExtFPGAInitLink (int devidx, int linknumber, int on);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be initialized
on: 0 = off, 1 = EFI REAR, 2 = EFI SFP
return value: =0 success
<0 error
Note: Sets the state of a link to the external FPGA for a specific device. Using EFlI REAR with the MultiHarp 160, the base unit

contains the links zero to two and every expansion unit adds two links. Using EFI SFP only link zero can be used.

int MH ExtFPGAGetLinkStatus (int devidx, int linknumber, unsigned int* status);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be queried
status: pointer to unsigned int
return value: =0 success
<0 error
Note: Gets the status of a link to the external FPGA on a specific device. The MultiHarp 160 base unit contains the links zero to

two and every expansion unit adds two links. For details look at the SYSLINK STATUS VHDL type.

int MH ExtFPGASetMode (int devidx, int mode, int loopback) ;

arguments: devidx: device index 0..7
mode: stream mode code to be set, see mhdefin.h
loopback: loopback mode code to be set, see mhdefin.h
return value: =0 success
<0 error
Note: For details on the meaning of the mode and loopback values see chapter 3.1.

int MH _ExtFPGAResetStreamFifos (int devidx);

arguments: devidx: device index 0..7
return value: =0 success
<0 error
Note: This function should typically be called after each call of the MH_lInitialize() function. Calling this function is only required

when using the T2DM-Mode.

int MH _ExtFPGAUserCommand (int devidx, int write, unsigned int addr, unsigned int* data);

arguments: devidx: device index 0..7

write: 0 = read, 1 = write

addr: an address for the data in the external FPGA

data: pointer to location of data to write or to receive
return value: =0 success

<0 error

Page 14

PicoQuant GmbH EFI Programming Reference

Note: Writes data to the user register at addr or reads the register contents from addr into data. For details see chapter 3.7.

Page 15

PicoQuant GmbH EFI Programming Reference

5. Glossary
Aurora 8B/10b:

A LogiCore IP designed for easy access to multi-gigabit transceivers using the Aurora protocol.

AXI (Advanced eXtensible Interface):

A bus protocol.

DLL (Dynamic Link Library):

A shared library system used by Microsoft Windows.

EFI (External FPGA Interface):

The PicoQuant interface for connecting TCSPC electronics to external FPGAs.

EFI SFP
Front External FPGA Interface, this is used together with an SFP+ Module, provides T2/T3 data

EFI REAR
Rear External FPGA Interface, this provides all available data streams T2/T3/T2RAW

ELF (Executable and Linkable Format):

A file format for executables.

FIFO (First-In First-Out):

A type of memory queue.

FMC (FPGA Mezzanine Card):

An expansion port standard for FPGA development boards.

FPGA (Field-programmable gate array):

A type of semiconductor device that is reprogrammable.

FWHM (Full width at half maximum):

A characteristic of the measurement of a distribution.

GT (Gigabit transceiver)
A versatile high-speed interface for implementing various high-speed protocols.

IP (Intellectual Property):

Page 16

PicoQuant GmbH EFI Programming Reference

In the context of FPGAs this refers to encapsulated pieces of digital logic used for development.

USB (Universal Serial Bus):
A peripheral standard.

SFP (Small Form-factor Pluggable)

Modern transceiver standard for networks feature both optical and electrical signal paths, utilizing matching
transceiver modules.

TCSPC (Time-correlated single photon counting):

The measurement and analysis of arrival times of individual photons.

TTTR (Time-tagged time-resolved):

A method for streaming and storing the arrival times of individual photons in TCSPC measurements. Specific
file formats are T2, T2DM and T3.

T2DM (TTTR2 Direct Mode):

Dedicated TTTR format for low-latency high-throughput connections such as the EFI REAR. T2DM is con-
ceptionally related to T2 mode.

VHDL (Very High Speed Integrated Circuit Hardware Description Language):

A Hardware Description Language.

XDC (Xilinx Design Constraints):

A file format for describing the pin assignment and other 1/O properties of Xilinx FPGAs.

Page 17

PicoQuant GmbH EFI Programming Reference

6. Legal Terms

6.1. Copyright

Copyright of this manual and on-line documentation belongs to PicoQuant GmbH. No parts of it may be
reproduced, translated, or transferred to third parties without written permission of PicoQuant

6.2. Trademarks

Other products and corporate names appearing in this manual may or may not be registered trademarks or
subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks.
They are used here only for the purposes of identification or explanation and to the owner’s benefit, without
intent to infringe.

Page 18

PicoQuant GmbH EFI Programming Reference

This page was intentionally left blank

Page 19

PicoQuant GmbH EFI Programming Reference

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH P +49-(0)30-1208820-0

Rudower Chaussee 29 (IGZ) F +49-(0)30-1208820-90

12489 Berlin info@picoquant.com
PicoQuanT Germany www.picoquant.com

Page 20

	1. Introduction
	2. Getting started with the External FPGA Interface
	2.1. Performance numbers of the example design
	2.2. System Requirements of the example design
	2.3. Setting up the Hardware
	2.4. Generating the Gateware
	2.5. Testing the System
	2.6. Modifying the Example Design
	2.7. Simulating the Design
	2.8. Porting the design to other FPGAs
	2.8.1. EFI FMC Connector (EFI REAR)
	2.8.2. SFP Connector (EFI SFP)

	3. External FPGA Interface IP Reference
	3.1. TCLK Domain Status Signals
	3.2. T2DM Stream
	3.3. T2/T3 Stream
	3.4. Loopback Stream
	3.5. Loopback Stream Status Signals
	3.6. SYSCLK Domain Status Signals
	3.7. USER_REG Interface
	3.8. I/O Signals

	4. Software Programming Guide
	5. Glossary
	6. Legal Terms
	6.1. Copyright
	6.2. Trademarks

