

VisUV/IR Laser Platform

Externally triggerable high power picosecond laser

PicoQuant GmbH

Copyright © 2025 PicoQuant. - Version 2.0.4 September 25

Table of contents

1. General Safety Information	4
1.1 Warning Symbols and Conventions	4
1.2 Electrical Safety Instructions	5
1.3 Laser Safety Instructions	6
1.3.1 Required Laser Safety Measures	6
1.3.2 What does the Owner/Operator have to observe?	6
1.3.3 General Safety Instructions for Operation	7
1.4 Laser Safety Labels	7
1.5 Remote Interlock Connector and Manual Reset	10
2. Introduction	12
3. Hardware Description	14
3.1 Front Panel	14
3.2 Laser Locking Behavior	16
3.3 Optical Output	17
3.4 Backside - Product Label	19
3.5 Cooling Fan Aperture Side – Heat Dissipation	19
4. Installation	21
4.1 Scope of Delivery	21
4.2 Preparations	22
4.3 Electrical Power and Signal Connections	22
4.4 Software Installation	22
4.5 Connecting the <i>VisUV/IR Laser Module</i> to a Sepia PDL 828 (Optional)	24
4.6 Connecting the <i>VisUV/IR Laser Module</i> to a PC via the RS232 Interface (Optional)	26
4.6.1 RS232 Command Reference	28
5. Operation	30
5.1 Powering the System ON	30

5.2 Setting Operating Parameters with <i>PQLaserDrv</i> - Graphical User Interface	31
5.2.1 "Select Device" Button	32
5.2.2 "Apply" and "Discard" Buttons	33
5.2.3 "Main Controller" Control Panel - Soft Lock and Unlock of the <i>VisUV/IR laser Module</i>	33
5.2.4 "VisUV/IR" Control Panel	35
5.2.5 "Presets" Control Panel	37
5.2.6 "About..." Button	39
6. Trouble Shooting, Tips and Tricks	41
6.1 Power Stability	41
6.2 Pulse Repetition Rate and Intensity Settings	41
6.3 Application examples	41
6.4 Trouble Shooting	42
7. Technical Data	43
7.1 Specifications	43
7.2 Dimensions	46
7.2.1 Dimensions of the <i>VisIR laser Module</i> with Shutter	46
7.2.2 Dimensions of the <i>VisUV-266-355-532 laser Module</i> with Shutter	47
7.2.3 Dimensions of the <i>VisUV/VisIR laser Module</i> with Filter Holder	48
8. Support	49
9. Legal Terms	50
9.1 Copyright	50
9.2 Trademarks	50
10. Further Reading	51
10.1 PicoQuant Bibliography	51
10.2 Download of Technical Notes, Application Notes	51
11. Appendix	52
11.1 Abbreviations	52
11.2 Overview of Laser Warning Labels by Module Type	53
11.3 Laser Delivery Report	56

1. General Safety Information

⚠ CAUTION

Before using this device, make sure that you have read and understood the content of this user manual. Store this documentation in a safe and easily accessible place for future reference.

Incorrect handling of this product may result in personal injury or physical damage. The manufacturer assumes no responsibility and cannot be held liable for any injury / damages resulting from operating the device outside of the normal usage defined in this manual.

1.1 Warning Symbols and Conventions

The following symbols and conventions will be used throughout this manual. Please take time to familiarize yourself with their meaning before proceeding.

Label	Explanation
	The general safety alert symbol is used to alert you to hazards that may lead to personal injury or physical damage. Follow all associated safety instructions to avoid possible injury or death.
	A high voltage warning symbol is used to indicate the presence of un-insulated, dangerous voltage inside the enclosure. Note that this voltage may be sufficient to constitute a risk of shock.
	The laser radiation warning symbol alerts you that the device can generate laser radiation. Follow all applicable laser safety instructions to avoid injury or damages.
	The device's susceptibility to electrostatic discharge (ESD) is indicated by the ESD warning symbol . Ensure that you follow proper ESD protection rules to avoid damaging the device.
⚠ CAUTION	Indicate a hazardous situation which, if not avoided, could result in minor or moderate injury.
⚠ WARNING	Indicate a hazardous situation which, if not avoided, could result in death or serious injury.

Label	Explanation
DANGER	Indicate a hazardous situation which, if not avoided, will result in death or serious injury.
NOTICE	Important tips and information for device operation that do not include a risk of injury or damage are prefaced with the " NOTICE " label.
	This symbol indicates that an earth terminal shall be connected to the ground (to avoid risks of electrical shock).
	Disconnect the power cord from the electrical outlet.

1.2 Electrical Safety Instructions

WARNING

To avoid electric shock, the power cord's protective grounding conductor must be connected to the ground.

This device contains no user serviceable components. Do not remove covers! Servicing of internal components is restricted to qualified personnel.

Only use dedicated power supply.

CAUTION

Disconnect the power cord from the electrical outlet before performing any maintenance.

Never connect or disconnect any cable while the system is powered ON. Before plugging or unplugging any interconnection between laser driver and laser head, switch off all components using the ON/OFF switch at the rear panel. Charged cables can damage electronic devices!

1.3 Laser Safety Instructions

⚠ WARNING

Class 3b / IIIb laser or Class 4 / IV laser - visible and invisible laser radiation

Avoid exposure to beam

The *VisUV/IR laser module* platform is available in different configurations and can emit visible, infrared, or UV light. Infrared or UV light is not visible to the eye! **These lasers modules can emit laser light of class 3b / IIIb or class 4 / IV, depending on module type.** Please refer to the labels affixed to the laser head, the table in Appendix 11.2 as well as to the laser delivery report for information on your device's classification.

Lasers can be hazardous and have unique safety requirements. Permanent eye injury and blindness is possible if lasers are used incorrectly. Pay close attention to each safety related CAUTION and WARNING statement in the user manual. Read all instructions carefully BEFORE operating this device.

The *VisUV/IR laser module* are manufactured according to the International Laser Safety Standard IEC 60825-1 and comply with the US law 21 CFR §1040.10 and §1040.11.

1.3.1 Required Laser Safety Measures

Please observe the laser safety measures for class 3b / IIIb or class 4 / IV lasers (depending on your device's classification) in accordance with applicable national and federal regulations. The owner/operator is responsible for observing the laser safety regulations.

1.3.2 What does the Owner/Operator have to observe?

- The owner/operator of this product is responsible for proper and safe operation and for following all applicable safety regulations.
- The owner/operator is fully liable for all consequences resulting from the use of the laser for any purposes other than those listed in the operating manual. The laser may be operated only by persons who have been instructed in the use of this laser and the potential hazards of laser radiation.
- The owner/operator is responsible for performing and monitoring suitable safety measures (according to IEC/EN 60825-1 and the corresponding national regulations).
- The owner/operator is also responsible for naming a laser safety officer or a laser protection adviser (according to the standard IEC/EN 60825-1: "Safety of laser products, Part 1: Classification of systems, requirements and user guidelines" and the respective national regulations).

- When using lasers of class 3B / IIIB or class 4 / IV, it is required to wear special eye protection (laser safety goggles).
- The room in which the *VisUV/IR laser module* is installed must be labeled as a laser area.

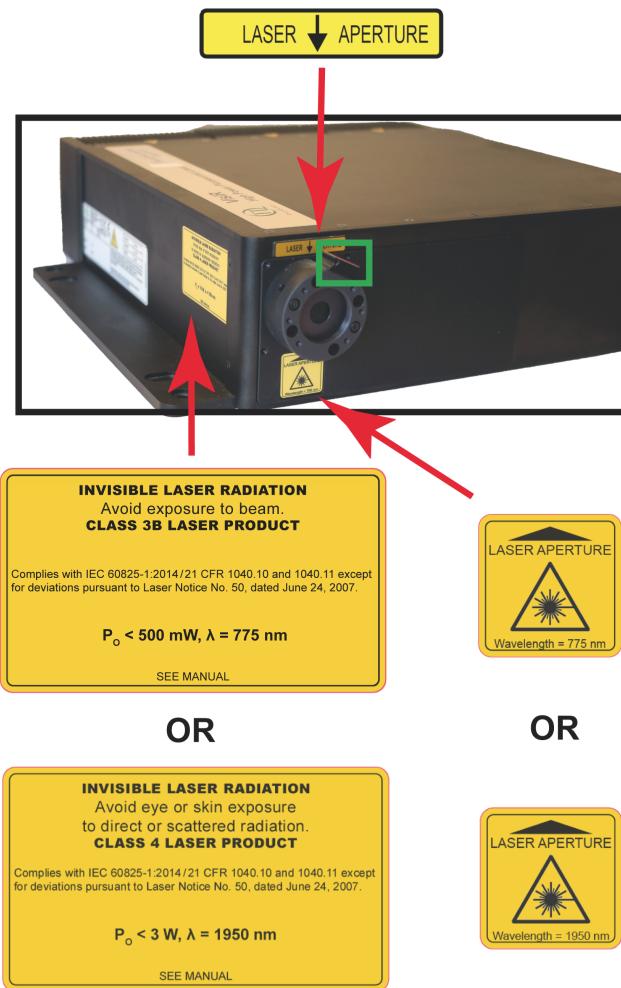
⚠ WARNING

The following security instructions must be followed at all times.

⚠ CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure!

1.3.3 General Safety Instructions for Operation


- Never look directly into a laser beam or a reflection of the laser beam. Avoid all contact with the laser beam.
- Beams of class 4 / IV laser light can ignite flammable materials or cause explosions.
- Do not introduce any reflective objects into the laser beam path. This includes jewelry, watches, etc.
- Every person involved with the installation and operation of this device has to:
 - Be qualified
 - Follow the instructions of this manual
- As it is impossible to anticipate every potential hazard, please be careful and apply common sense when operating the *VisUV/IR laser module*. Observe all safety precautions relevant to class 3B / IIIB or class 4 / IV lasers.
- This device does not contain any user-serviceable optical or electrical components. Do not open the device's housing under any circumstances.

1.4 Laser Safety Labels

The safety labels are visible on the optical output side of the *VisUV/IR laser module*, while the laser aperture labels are located below and above the respective laser outputs, as shown in [Fig. 1](#) and [Fig. 2](#), respectively.

NOTICE

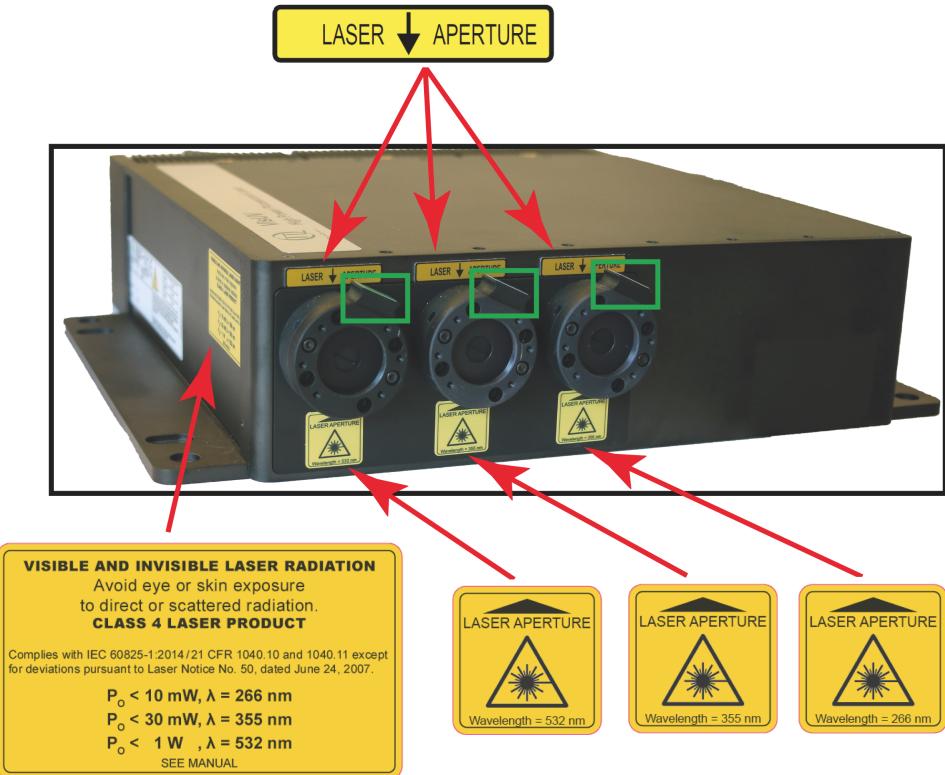
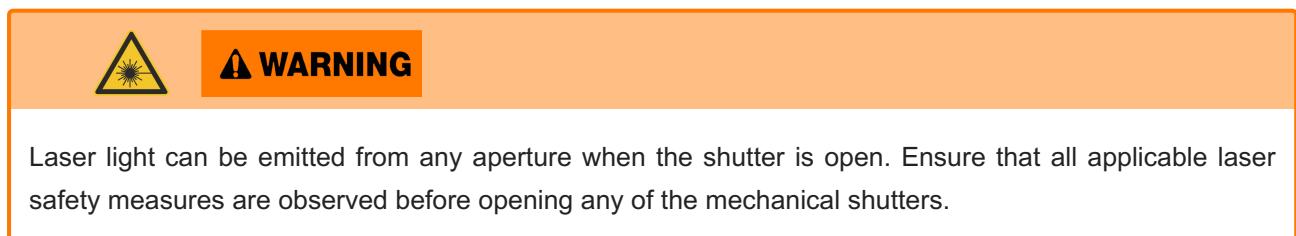

The labels shown in the following figures represent only examples. Please check the labels on your device as well as the laser delivery report in the appendix for the applicable wavelengths and optical power. A table summarizing the warning labels for all currently available *VisUV/IR laser modules* is provided in section 11.2.

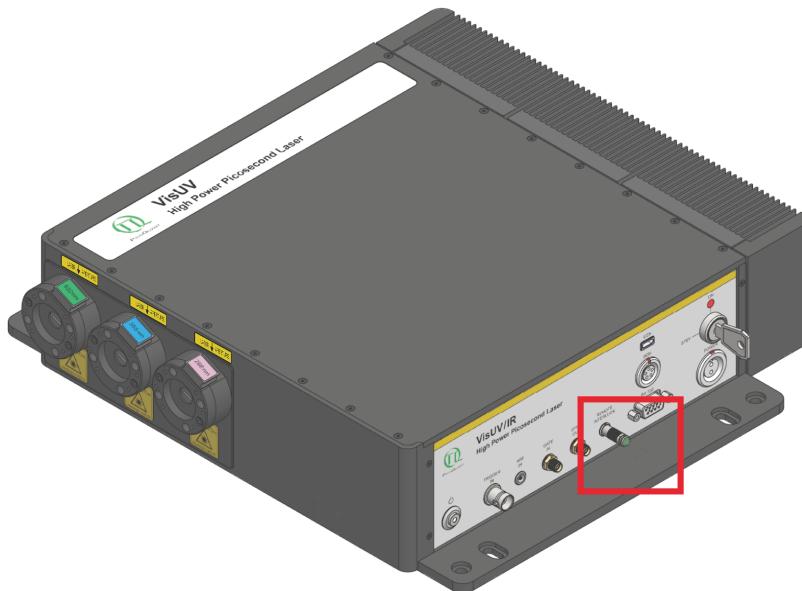
Figure 1: VisIR-775 (class 3b / IIIb) or

VisIR-1950 (class 4 / IV)


– laser aperture label and laser warning sign

*Figure 2: VisUV-266-355-532 (class 4 / IV)
- laser aperture label and laser warning sign*

Each laser output port features a manually operated mechanical shutter (highlighted by green boxes in Fig. 1 and Fig. 2). The shutters are labeled with the wavelength that is emitted from their respective laser output port. The shutters are operated by pulling / pushing the labeled sliders:


- The shutter is **closed** (laser emission is mechanically blocked) when the slider is **pushed in**.
- The shutter is **open** (laser emission is not mechanically blocked) when the slider is fully **pulled out**.

The identification / product label (including PicoQuant's logo, model name, serial number, WEEE symbol and CE symbol) is located on the backside of the *VisUV/IR laser module* (see chapter 3.4).

1.5 Remote Interlock Connector and Manual Reset

In order to meet laser safety regulations for laser class 4 / IV devices, a remote interlock connector are part of the *VisUV/IR laser module* as a hardware interlock. Removing the green LEMO connector plug will immediately deactivate the power supply of the laser. The remote interlock connector is located on the front plate of the *VisUV/IR laser module* as shown in [Fig. 3](#).

*Figure 3: : Location of the remote interlock connector
(highlighted by a red box)*

NOTICE

In order to meet laser safety regulations, you may need to install a remote interlock, e.g., a door switch, to deactivate the power to the laser when the door to the laser area is opened.

Pin assignment for the interlock

The interlock is a 4 pin LEMO EGG.00.304.CLL female connector as shown in [Fig. 4](#). **The pins 2 and 3** need to be bridged using a suitable adapter to activate the laser emission.

Do **NOT** apply any voltage.

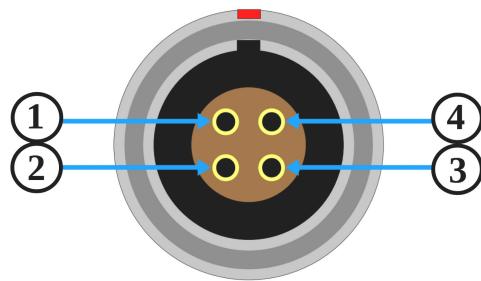


Figure 4: Interlock LEMO connector

NOTICE

In order to comply with Laser Class 4 / IV regulations, laser output will be internally blocked if one of the following events occur:

- Power interruption during the operation of the *VisUV/IR laser module*.
→ Laser emission will not resume once power is restored.
- Interruption of the remote interlock circuit.
- Laser key switch is not in the STBY position when the power button is pushed in order to start the *VisUV/IR laser module*.
- When using the SEM interface, the connected Sepia PDL 828 can generate a lock.

Once the hardware lock of the system has been triggered, the **ON** LED will **flashes red continuously**, even when the laser key switch is in the ON position.

To unlock the system, a **manual reset** is needed. The **manual reset** is done by turning the laser key switch back into the STBY position. Laser emission can then be reactivated by turning the laser key switch into the ON position.

2. Introduction

Devices based on the *VisUV/IR* laser platform are compact, stand-alone picosecond laser modules. They implement a Master Oscillator Fiber Amplifier (MOFA) concept with optional frequency conversion. The master oscillator generates infrared picosecond laser pulses with variable repetition rates up to 80 MHz using the proven gain-switching technique from PicoQuant. The output of this seed laser is directly fed into a multistage fiber amplifier, which boosts the output from the seed laser by several dB while conserving all other characteristics of the seed light such as emission wavelength, polarization, and pulse width.

Modules derived from the *VisUV/IR* laser platform can be used as stand-alone devices including an internal driver unit with all common driving functions as found in the Sepia PDL 828 from PicoQuant. The modules can be operated at 12 different internally selectable repetition rates ranging from 31.25 kHz to 80 MHz and can also be triggered externally by TTL or NIM signals at any repetition rate from < 1 Hz and up to 80 MHz. This feature is useful for perfect synchronization of the laser in a master/slave configuration.

The *VisUV/IR* *laser module* can also be controlled by an external Sepia PDL 828 through the SEM interface. It is also possible to control the *VisUV/IR* *laser module* through an RS232 interface using human-readable commands. The command set features are the same as in the two Sepia modes.

The *VisUV/IR* *laser module* are built from a versatile, picosecond pulsed, high power laser platform and are available in several configurations.

VisIR modules

The *VisIR* master oscillator generates infrared picosecond pulses at 1064 nm, 1531 nm, 1550 nm or 1950 nm that are fed into a multistage fiber amplifier and, optionally, a single pass Second Harmonic Generation (SHG) stage yielding the final laser output. In that way, it is possible to generate picosecond pulses at 766 nm or 774 nm with an average output power of more than 1.5 W. An example of the working principle for the *VisIR-765-HC* is schematically depicted in [Fig. 5](#).

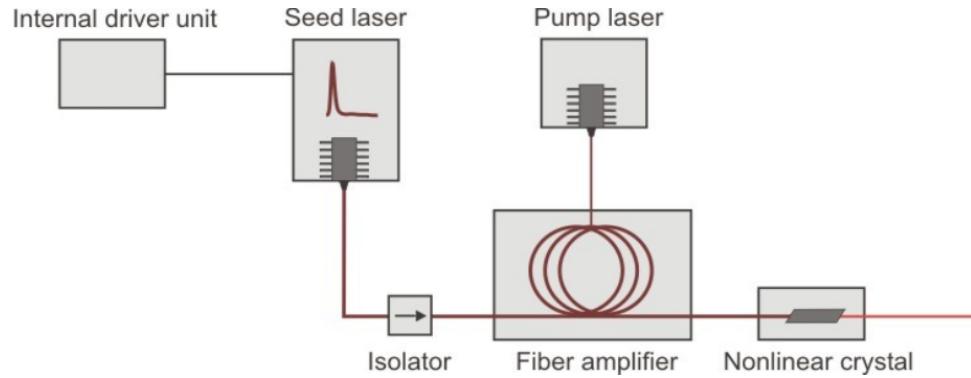


Figure 5: VisIR – Schematic representation of the working principle

VisUV modules

The master oscillator of the VisUV generates infrared picosecond pulses at 1064 nm. The seed beam is then passed through a multi-stage fiber amplifier, which boosts the seed beam's intensity by several dB while maintaining the other characteristics of the laser light such as emission wavelength, polarization, and pulse width.

The high pulse energies of the amplified infrared laser allow for efficient wavelength conversion enabling optical outputs at 266 nm, 280 nm, 295 nm, 532 nm, 560 nm, and 590 nm with power levels up to 750 mW (wavelength dependent). Each wavelength is emitted from its own discrete output port, equipped with an individual shutter. VisUV modules are available in 1, 2, or 3 beam configurations. Fig. 6 illustrate the working principle of a 3-color VisUV-266-355-532 module.

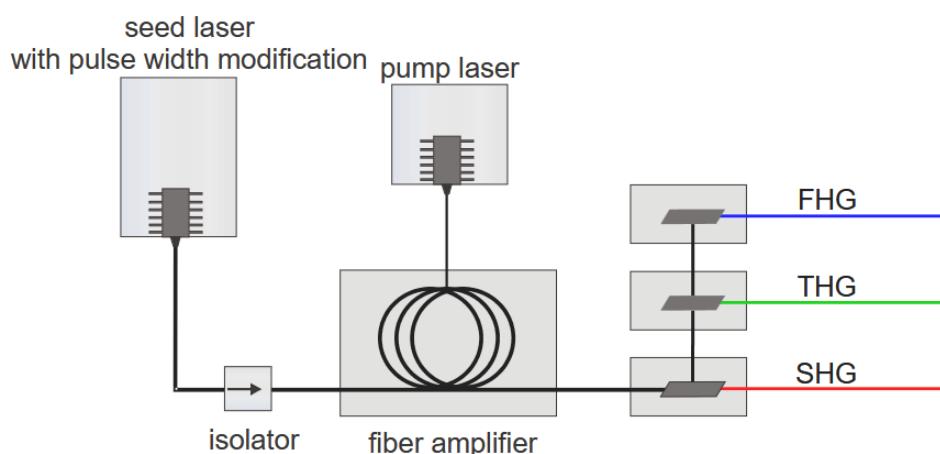


Figure 6: VisUV - schematic representation of the working principle

3. Hardware Description

3.1 Front Panel

NOTICE

The front panel does not feature any manual controls for setting the operating parameters (e.g., intensity, repetition rate, trigger source selection) of the *VisUV/IR laser module*. These settings must be made via a Graphical User Interface (GUI), see section 5.2 for more details.

However, the laser device can also be used without being connected to a PC. The *VisUV/IR laser module* will then operate with the last set of operating parameters stored in its memory.

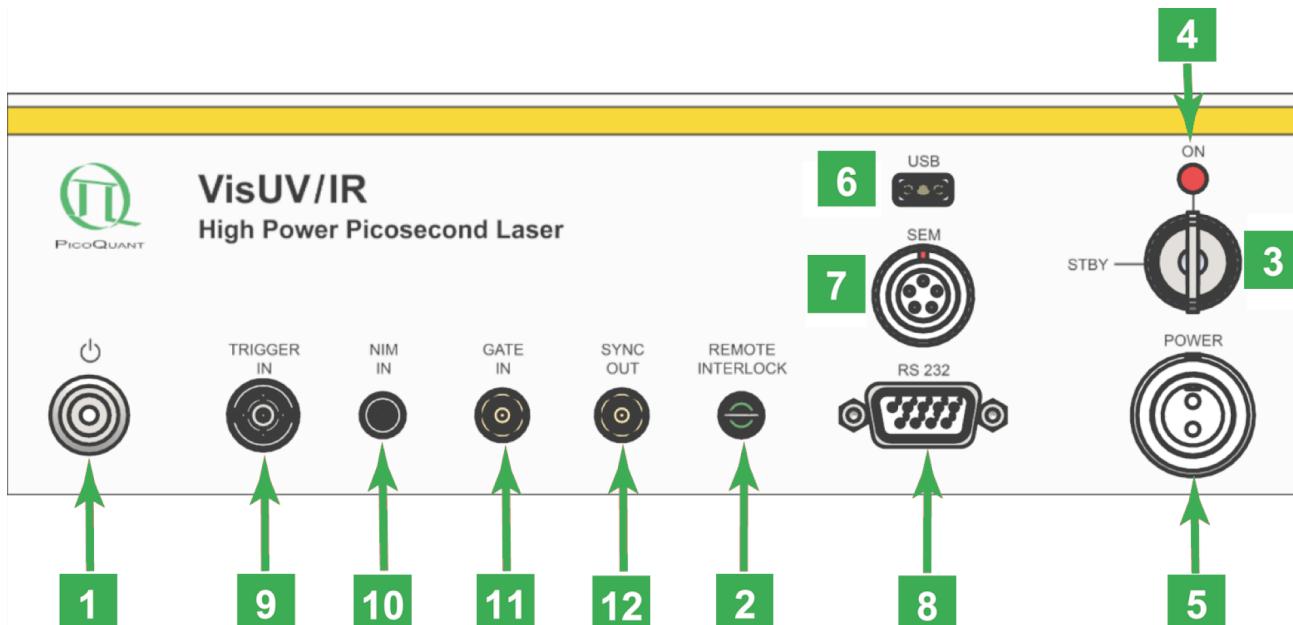


Figure 7: Front Panel

1

Power button and indicator. Pressing this button switches the *VisUV/IR laser module*'s power state from off to on (and vice versa). The white LED in the power button indicates that the *VisUV/IR laser module* is on and that laser radiation can be emitted.

2

REMOTE INTERLOCK socket for remote interlock connector (see section 1.5).

3**Key switch** (laser switch):

Turning the key to the *ON* position activates the laser. Power to the laser can be locked off by turning the key to the *STBY* position and removing the key.

4

Key switch indicator. The lit orange LED indicates that the *VisUV/IR laser module* is *ON* and that laser radiation is being emitted. A **red blinking ON LED** indicates that the laser module is in internally **locked condition**.

5

Main **POWER** input socket for the power supply.

6

USB-C connector to interface the *VisUV/IR laser module* with the PC.

7

SEM laser connector: the *VisUV/IR laser module* can be optionally connected to and controlled by a Sepia PDL 828 laser driver via this port using a dedicated connector cable. Please refer to section 4.5 and the Sepia PDL 828 manual for more information.

8

RS232 connector: This port can be used to connect the *VisUV/IR laser module* to a control device via an RS232 interface.

NOTICE

- Changing the operational parameters of the *VisUV/IR laser module* requires that at least one type of interface (USB-C, SEM or RS232) is connected to a control device, such as a PC or Sepia PDL 828, that runs a compatible software application (e.g., PicoQuant's *PQLaserDrv.exe*).
- If more than one of these connections are active at the same time, the *VisUV/IR laser module* will accept control inputs from only one of them in the following order of priority: USB-C, SEM, and RS232 (from highest to lowest).
- If no connection is active, the *VisUV/IR laser module* will operate with the last configuration.
- Changing interfaces is not possible while the *VisUV/IR laser module* is on.
- In order to change the interface, a power cycle is needed.

9

TRIGGER IN: external trigger input with variable trigger threshold, typically using a TTL pulse.

10

NIM IN: external NIM trigger input. Ideal to triggering e.g. the oscillator module (SOM 828) of the Sepia PDL 828 from PicoQuant.

11**GATE IN:** gating input (female SMA connector).

The gating function affects the triggering mechanism. The gating input accepts TTL pulses and is effective if the *VisUV/IR laser module* is being triggered either from the internal oscillator or from an external source. The gating function can perform transition between on and off states within nanoseconds. Presuming a precise timing, it can switch in between two laser pulses, even at high repetition rates. The number of laser pulses that can be gated off depends on the repetition rate and is in the range of 3 to 8 pulses. If too many pulses are gated, the fiber amplifier switches off to prevent damage to it. The amplifier will switch on again once the gating signal is disabled. Note that switching the amplifier on is not instantaneous but needs a few hundred milliseconds.

12**SYNC OUT:** Synchronization output connector (SMA connector).

3.2 Laser Locking Behavior

- The key switch **3** interrupts the laser power supply when it is in the horizontal position. The key can only be removed in this position. It's a good practice to keep the key switch locked unless the *VisUV/IR laser module* can be operated in accordance with the safety regulations.
- The remote interlock **2** shuts the laser power supply off when the loop current is interrupted.
- To comply with laser safety regulations, laser emission is locked off for at least the first 10 seconds after the main power is switched on.
- Laser emission is disabled as long as the *VisUV/IR laser module* is checking its hardware while powering up.
- The *VisUV/IR laser module* will be locked as soon as it detects abnormal operating conditions.
- Losing the trigger signal when the *VisUV/IR laser module* is triggered externally does NOT activate the hardware lock. In this case, the intensity of the pump diodes will be minimized while the seed laser is in a "stand-by" mode, waiting for the trigger signal for 10 s. This might lead to low powered residual seed laser emission from the corresponding aperture (1064 nm for *VisUV* or 1530 nm for *VisIR*).
 - Additionally, the ON LED on the front panel will still be lit in orange for 10 s before switching off. After that time, the pump diodes will be fully turned off.
 - Restoring the trigger signal will lead the *VisUV/IR laser module* to resume laser emission without needing a manual reset. Please note that if the trigger signal is restored during the 10 s "grace time" window (when the ON LED is still lit in orange), laser emission will be restored on the first trigger pulse. Resuming laser emission after this time window has elapsed will occur only after several trigger pulses.

- The controller can be instructed via the GUI or via any software that uses the programming library (API DLL) to hold the laser soft-locked regardless of the position of the key switch. Refer to section 5.2.3 (GUI) and the separate API manual for more information on soft locking.

⚠️ WARNING

Soft locking the laser does not ensure eye safety!

3.3 Optical Output

The *VisUV/IR laser module* platform features up to three dedicated laser output ports. Depending on the hardware configuration of the laser platform, one to three of these ports can be active. Unused laser output ports are closed with screw-on lids.

The *VisIR* has one optical free beam output equipped with a manually controlled laser output shutter. The label on the shutter shows the output wavelength as shown in [Fig. 1](#). The mechanical shutters are provided with threaded holes to which optional fiber couplers can be attached.

The *VisUV* can have up to three active, dedicated laser output ports, as shown in [Fig. 2](#). Each active port is equipped with a manually controlled laser output shutter, while unused ports are closed.

However, if the *VisUV* is equipped with only a single UV wavelength (*VisUV-266* or *VisUV-355*), the shutter will be replaced with a cylindrical shaped filter holder, see [Fig. 8](#).

Figure 8: Single UV wavelength VisUV unit equipped with cylindrical filter holder

For laser safety reasons, these single wavelength *VisUV* models are also delivered with a red safety cap at the end of the cylindrical filter holder, see [Fig. 9](#). This protective cap is secured via a single M3 hex crew and needs to be removed by the end user before first use of the laser module. A fiber coupler can be attached to the filter holder in the case of the *VisUV-355*.

Figure 9: Protective end cap (red) for closing the optical output of the VisUV-266 and VisUV-355

The laser output of a *VisUV/IR laser module* can be coupled into either multi mode (MM) or polarization maintaining (PM) single mode fibers. If a fiber coupler is attached to the output:

- The fiber type used is indicated in the individual test report.
- **Do not remove the fiber from the coupling optics**, as this will result in the loss of the coupling adjustment! → Readjustment is a demanding task and needs experience.

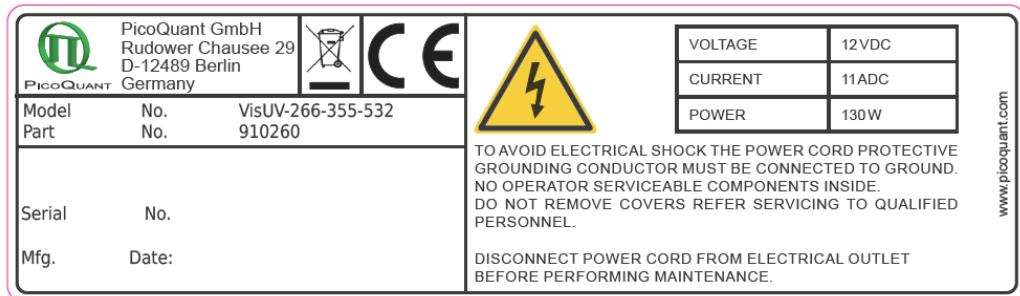

Some *VisUV/IR laser module's* (such as the *VisIR-1950-F*) are equipped with a fixed optical fiber output, see [Fig. 10](#). This fiber cannot be removed or exchanged by the user.

Figure 10: VisIR-1950-F with fixed optical fiber

3.4 Backside - Product Label

The product label can be found on the backside of the VisUV/IR laser module, see [Fig. 11](#). It shows all relevant information needed to identify the device, including product name, part number, serial number, manufacturing date as well as the PicoQuant logo with address, CE label, and waste regulation identifier.

Figure 11: product label, example.

This product information must be communicated to PicoQuant in all communication and trouble shooting processes regarding this device.

3.5 Cooling Fan Aperture Side – Heat Dissipation

A special design for heat dissipation is required due to the laser's high pulse energies. The laser module is therefore equipped with cooling fans on the heat sink as shown in [Fig. 12](#). For best laser performance and stability, please ensure free air circulation around the whole laser module.

Figure 12: Heat sink with integrated fan aperture

⚠ CAUTION

Do not block the fan apertures. This might lead to laser instability or damage to the laser module!

By default, the cooling fans will be running when the *VisUV/IR laser module* is powered on. PicoQuant recommends to leave the fans permanently running when using the laser module.

However, if your set-up is very sensitive to vibrations, the fans can be temporarily turned off via the Fan check box **22** in the software GUI (see section 5.2.4). This mode of operation should be restricted to short periods of time to prevent laser instabilities or even damage to the module.

NOTICE

A note on vibration-sensitive measurements: In all tests carried out at PicoQuant, there has never been a noticeable influence of fan vibrations on such measurements.

⚠ CAUTION

Disabling the fans via software for a longer time span will result in the *VisUV/IR laser module*'s heat sinks becoming very hot ($> 65^{\circ}\text{C}$). Do not touch the heat sinks under these conditions!

The high temperature may also prevent the stable and safe operation of the laser. Note that the laser module will enter a lock state when the temperature reaches $\sim 68^{\circ}\text{C}$. Higher temperatures may result in damage to the laser module.

4. Installation

4.1 Scope of Delivery

Your *VisUV/IR laser module* is delivered with a series of cables and accessories. Start by unpacking the delivery box and check that all components listed in the table below are present.

VisUV/IR laser module

2 keys for the laser key switch

*Remote interlock stub plug
(4 pin LEMO plug with green end cap)*

*Cable USB 3.0 C MALE TO
USB 3.0 A MALE (2 m, 6.5 x ft)*

*Power supply with power cable
featuring appropriate mains plug
(cabel not shown)*

*The manual and operation software
can be downloaded from our website:
www.picoquant.com/downloads*

⚠ CAUTION

The *VisUV/IR laser module* is quite heavy (7.5 kg). Be careful when unpacking the device and observe all appropriate guidance for lifting heavy objects. Not observing such guidelines may result in back injuries. Please refer to your safety officers or institutional safety guidelines if you are unsure on how to safely lift heavy objects.

4.2 Preparations

Before installing and using the *VisUV/IR laser module*, please make sure to have:

- A solid base onto which the *VisUV/IR laser module* can be placed (e.g., an optical table).
- A computer to install and run the operating software. The computer needs to have a free USB slot as well as a Windows 10 or 11 operating system.

Ensure that all of the following conditions are met before proceeding with the installation (the numbering refers to the front panel as shown in [Fig. 7](#)):

- The laser key switch **3** is set to the position **STBY** (horizontal).
- The green remote interlock stub connector is plugged into the remote interlock socket **2**.

4.3 Electrical Power and Signal Connections

- If desired, connect an external trigger signal to the connector labeled **TRIGGER IN** **9**.
- If desired, connect the **SYNC OUT** output connector **12** to an external device, e.g., TCSPC electronics from PicoQuant such as the TimeHarp 260, PicoHarp 300, MultiHarp 150, HydraHarp 400, or an oscilloscope.
- Plug the power cable into the **main power socket** **5**, but do not plug the power cable into a power outlet before installing the PicoQuant laser driver software (see section 4.4).

4.4 Software Installation

Once the *VisUV/IR laser module* is in its dedicated place and the relevant cables have been inserted, connect the *VisUV/IR laser module* to the host computer using the delivered USB-C cable. A USB 2.0 port can be used.

NOTICE

The *VisUV/IR laser module* should not be powered on before the control software is installed on the host computer!

The control software "PQLaserDrv.exe" for your *VisUV/IR laser module* and other laser drivers manufactured by PicoQuant needs to be set-up by an installer. The control software can be downloaded from our website: www.picoquant.com/downloads. Installing the software is straightforward and performed by a step-by-step installation wizard.

NOTICE

In order to future-proof the software, a switch to a new USB driver architecture is required **starting with software version 1.2.xx.636** (changing from PQUSB to WinUSB). The two driver architectures are **NOT** compatible with each other.

This means that once the new drivers have been installed and they have registered the PicoQuant laser driver(s), software packages relying on the other drivers will no longer be able to "see" or connect to these USB device.

The reverse is also true: i.e. a software package relying on the newer drivers will not be able to discover or communicate with laser drivers registered to the older USB driver architecture.

An important consequence of this is that both the *PQLaserDrv* package as well as any software package requiring a connection to a PicoQuant laser driver (i.e. *SymPhoTime 64* or *EasyTau*) should be fully updated together.

To install the software:

- Download the control software from our website: www.picoquant.com/downloads
- Launch the program: *PQLaserDrv_Setup.exe*
- Follow the instructions on the screen
- Accept the License agreement and click *Next* when requested
- Define the destination folder for the installation of the software
- Select the components to be installed (availability of which can change depending on product releases or discontinuations)

NOTICE

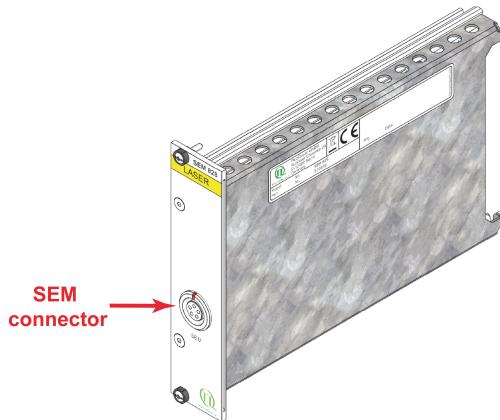
The PicoQuant Laser Driver Software can control not only the *VisUV/IR laser module* but also the Sepia devices from PicoQuant. In case you need to control multiple lasers, it is necessary to install all relevant components.

- Select which launcher icons will be generated

NOTICE

It is recommended to choose at least one of the suggested icon options. For each icon option chosen, the installer automatically creates two software launchers corresponding to the "Bright" and "Dark" PicoQuant color themes. For more details about the software color themes please refer to section 5.2.

- Validate your choices by clicking on *Next* and then click on the *Install* button to start the installation
- Click *Next* to start the installation of the drivers. It is possible that a *Windows Safety Warning* window pops up. In that case confirm the installation when requested in order to continue with the installation.
- Click *Next* when requested to complete the installation
- Click *Finish* to close the Installation Wizard


Once the software is installed, the *VisUV/IR laser module* can be switched on (see chapter 5). When the laser is powered on for the first time, Windows will detect a new device and installs the necessary device drivers.

4.5 Connecting the *VisUV/IR Laser Module* to a Sepia PDL 828 (Optional)

The *VisUV/IR laser module* can be optionally connected to a *Sepia PDL 828* laser driver from PicoQuant via a *Sepia Extension Module (SEM 828)*. This allows fully controlling a connected *VisUV/IR laser module* (e.g., setting the intensity, repetition rate, trigger source) from the *Sepia PDL 828*'s GUI. The connected *VisUV/IR laser module* can then be operated along with laser heads from the *LDH* or *LDH-FA* series as well as with pulsed LEDs from the *PLS* series, exploiting the full functionality of the *Sepia PDL 828*'s oscillator module.

Perform the following steps to connect the *VisUV/IR laser module* to a *Sepia PDL 828*:

1. Make sure that both devices are powered down before proceeding.
2. Install a *SEM 828*, see [Fig. 13](#) into the *Sepia PDL 828* (if not already present). Refer to the manual of the *Sepia PDL 828* for detailed instructions.

Figure 13: Sepia Extension Module (SEM 828) with connector

3. Plug the dedicated SEM cable into the corresponding SEM sockets on both *VisUV/IR laser module* and *Sepia PDL 828*.
4. Power up the *VisUV/IR laser module* and let it fully initialize (the *Sepia PDL 828* has to be powered down).
5. Power up the *Sepia PDL 828* and let it fully initialize.
6. Start the *PQLaserDrv.exe* and select the *Sepia PDL 828* as active laser driver (if necessary).
7. The control elements (see section 5.2.4) of the connected *VisUV/IR laser module* should now appear in an appropriate slot of the *Sepia GUI*. Refer to the *Sepia PDL 828* Manual for instructions on how to use its specific software controls.

NOTICE

The order in which the devices are turned on is very important (steps 4 and 5)! Always turn on the connected stand alone laser device first. Only turn on the *Sepia PDL 828* afterwards or the control elements will not show up in the GUI.

⚠ WARNING

To prevent data corruption: do not unplug the dedicated SEM cable while both devices are powered on.

Perform the following steps to power down the combination of *VisUV/IR laser module* and *Sepia PDL 828*:

1. Power off the *Sepia PDL 828*
2. Power off the *VisUV/IR laser module*
3. Remove SEM cable if necessary

⚠ WARNING

To ensure laser safety, the *Sepia PDL 828* will control the interlock state of a connected *VisUV/IR laser module*. This has the following consequences:

- If the interlock is triggered by the *Sepia PDL 828*, then laser emission is shut down for all laser heads as well as for the connected *VisUV/IR laser module*.
- If the *Sepia PDL 828* is powered off, the connected laser device will not be able to emit laser light while SEM cable is applied.
- While starting up, the *Sepia PDL 828* will also block laser emission from any connected device.
- Using the Soft Lock button in the *Sepia PDL 828* GUI will also turn off laser emission from any connected device.
- To activate laser emission from a connected *VisUV/IR laser module*, first make sure that the *Sepia PDL 828* is unlocked and that the key switch of the *VisUV/IR laser module* is in STBY position. Only then turn key switch of the *VisUV/IR laser module* to the ON position.

4.6 Connecting the *VisUV/IR Laser Module* to a PC via the RS232 Interface (Optional)

If no USB or SEM cable is attached the *VisUV/IR laser module* starts in RS232 mode. In this mode all settings can be changed like in the other modes. In order to control the *VisUV/IR laser module* connect a standard RS232 connector. Use a terminal program like *TeraTerm* or *Putty* to write commands to the *VisUV/IR laser module*.

Perform the following steps to connect the *VisUV/IR laser module* with a PC over RS232 interface:

- Connect the PC and the *VisUV/IR laser module* with a standard RS232 cable. One can also use some kind of USB-to-RS232 adapter.
- Open a terminal program and connect to the correct com port while using baudrate of 115200 and data format of 8 data bits and one stop bit. If you don't know the correct port either check the window device manager or try every port by typing *IDN?.

```

PicoQuant GmbH 2020
--> DigiSUV <--
RS232-Interface

RS232-Interface

Check Module Hdr
CRC PASSED
Loading Module Hdr
CRC PASSED
fetching commands
:
:
DONE

Check Module Cnt
CRC PASSED
Loading Module Cnt
CRC PASSED
fetching commands
:
:
DONE

COMMAND UNKNOWN

```

Figure 14: Startup output when using RS232 interface

- Power on the *VisUV/IR laser module*, some startup messages should appear, see Fig. 14.
- To verify the sending commands is also possible type *IDN? in a newline and the *VisUV/IR laser module* should response with the device name.
- For successful usage keep following points in mind:
 - Use only uppercase letters, numbers and special character ‘!’, ‘*’ and ‘?’
 - Single white space is also possible depending on command but not in numerical values
 - Only use short form (uppercase part) of command
 - All settings are nonvolatile if otherwise noted
 - Command processing starts with *newline*
 - System response:
 - **BUSY** - system is busy and can therefore not handle command
 - **ACK** - response for every correct set command (ends with ‘! ’)
 - **NACK** - response for commands with wrong parameter
 - **COMMAND UNKNOWN** - wrong or misspelled command

4.6.1 RS232 Command Reference

- **TRIGger**

- **:STATus?**

- Returns *OK* or *NOK* depending on trigger detection on seed PCB

- **:SOURce[? | INT1 | INT2 | VAR | NIM | OFF]**

- ? - Print current trigger source
 - INT1 - 80MHz (internal)
 - INT2 - 1MHz (internal)
 - VAR - external input
 - NIM - external input

- **:DIVider[? | 1 | 2 | 4 | 8 | 16 | 32]**

- change trigger divider
 - divider only applies to internal trigger sources

- **:THreshold[? | 0..4095]**

- trigger threshold for external input (VAR only)
 - 1V → 0
 - 0V → 2048
 - +1V → 4095

- **SYStem**

- **:FW?**

- Print firmware version

- **:RES!**

- Reset front panel controller

- **:PFW?**

- Print pump controller firmware version

- **:HOUR?**

- Print total uptime

- ***IDN?**

- Print model name as device idendification

- **SOURce**

- **:INTEnsity[? | NUM]**

- intensity in %

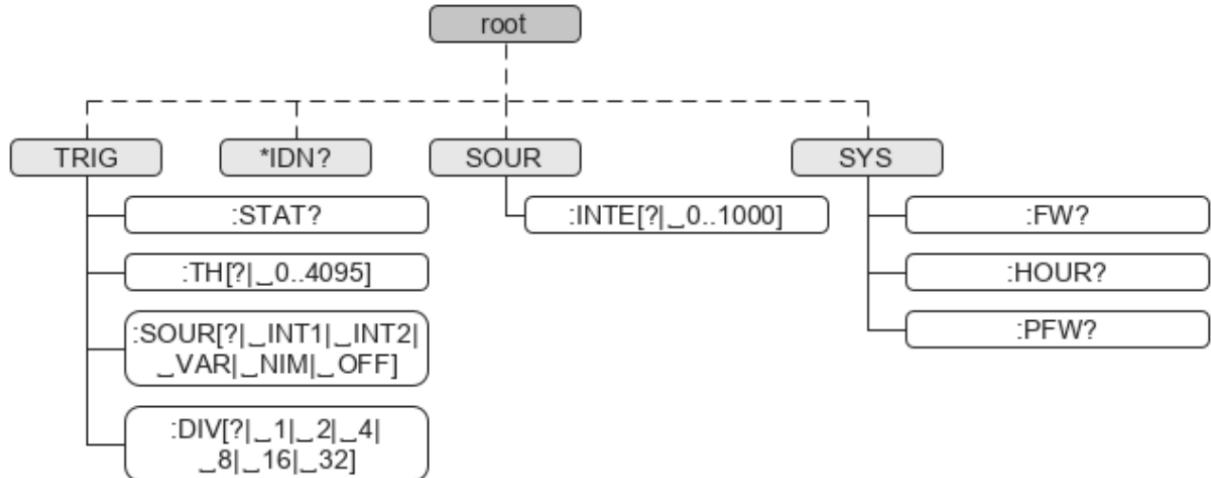


Figure 15: RS232 command overview

5. Operation

This section describes in detail step by step how to switch on the *VisUV/IR laser module* and how to use the GUI to set the various laser module settings (e.g. power intensity, trigger source, repetition rate, fan control).

For optical power detection use a suitable powermeter and pay attention to the wavelength settings.

This section covers only the USB and the SEM mode.

5.1 Powering the System ON

- Ensure that the laser key switch **3** is set to the **STBY** (horizontal) position.
- Ensure that the remote interlock connector **2** is in place.
- Press the power button **1** to start up the *VisUV/IR laser module*. The power button indicator LED will light up white. The key switch indicator **4** start flashing red during initialization. After about 10 seconds, this LED will turn off and the system is ready for operation.

NOTICE

In order to comply with Laser Class 4 / IV regulations, laser output will be internally blocked if the key switch is not in the **STBY** position when the power button is pressed. This hardware locking will be indicated by a permanently red blinking ON LED and the system is switched into an internal locked condition.

To unlock the system a manual reset is needed. The manual reset is done by turning the key switch back into the **STBY** position.

- Turn the key switch **3** to the ON position (vertical). The LED labeled **ON** **4** will turn yellow.

NOTICE

In order to reach stable output power, please let the *VisUV/IR laser module* warm-up for at least 20 min before you activate laser emission through the key switch.

WARNING

Before proceeding to the next steps, please make sure that all safety measures have been taken according to chapter 1.3 Laser Safety Instructions.

- Open the laser output shutter.
- Adjust the operating parameters through the appropriate software (e.g., with *PQLaserDrv.exe* in stand-alone mode or connected to a *Sepia PDL 828*).

If you cannot detect a laser beam, please check the trouble shooting diagram in section 6.4.

5.2 Setting Operating Parameters with *PQLaserDrv* - Graphical User Interface

NOTICE

The *VisUV/IR laser module* must be turned on and the initialization process completed, before the software can be started!

The GUI is available in three different **color schemes**: PicoQuant bright scheme, PicoQuant dark scheme and a standard Windows scheme. The latter can be customized using the standard Window control panel.

The dark scheme is intended for light sensitive set-ups and experiments such as, e.g., photon counting and single molecule sensitive spectroscopy set-ups, where ambient light perturbation should be minimized as far as possible. However, for better readability, all screen shots in this manual correspond to the PicoQuant bright color scheme.

The color scheme is applied by the command line parameter "/style=<scheme>" where the placeholder <scheme> could be one of the legal values "dark", "bright" or "windows".

During the installation setup of the software, the installer can optionally generate separate desktop as well as quick launch icons for the respective bright and dark schemes (see section 4.3).

In the interest of ergonomics, all relevant active controls (button, edit box, etc.) change color when the mouse pointer hovers over them.

An overview of the GUI with all control elements is shown in [Fig. 16](#) below.

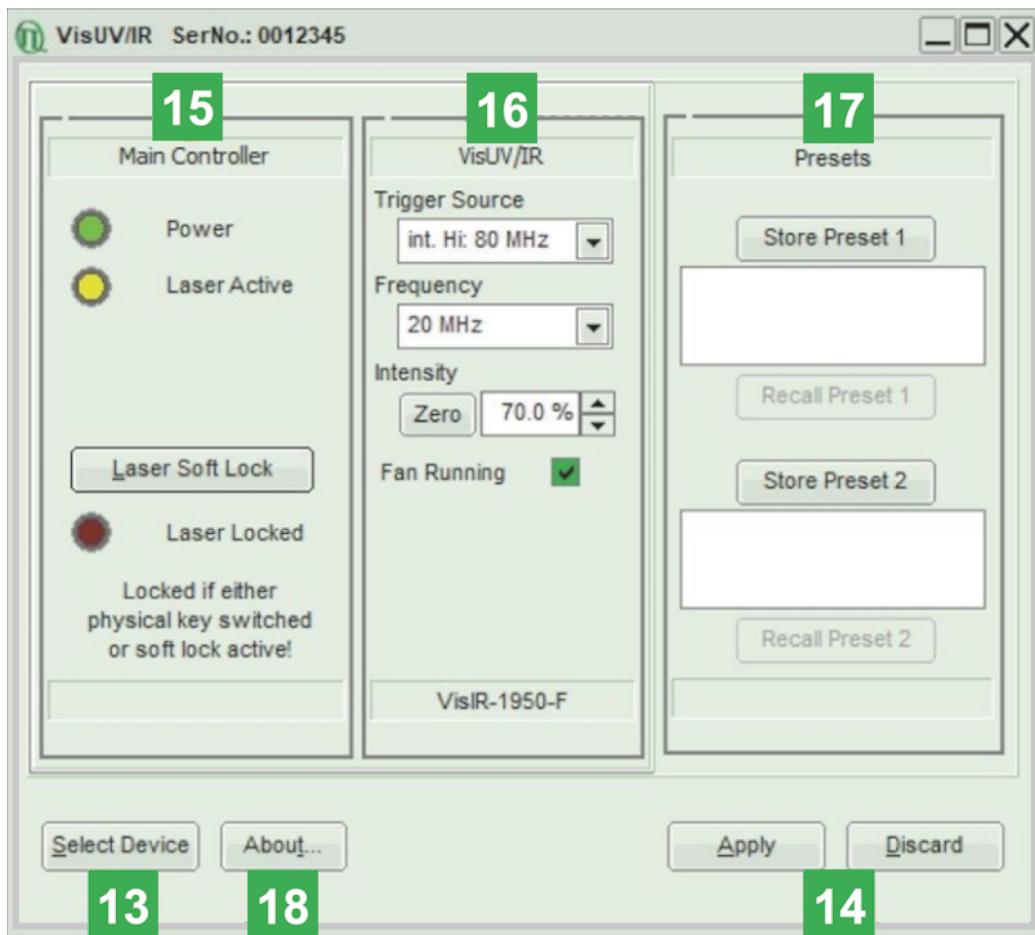


Figure 16: PQLaserDrv GUI with a connected VisIR-1950-F - Overview of all control groups with indication of the individual sections

5.2.1 "Select Device" Button

The **Select Device** **13** function is useful if more than one *VisUV/IR laser module* (or any other USB laser device from PicoQuant) is connected to the same host computer. It can also be used to restore the USB connection to the device if it is interrupted for any reason during operation.

A mouse click on the **Select Device** button will start a scan for supported devices connected to the PC.

A modal dialogue with an **OK** and **Cancel** button presents a list box with the currently connected devices, see [Fig. 17](#). When opening the list box, all detected devices are listed by their serial number. The currently selected device is marked with an asterisk ******.

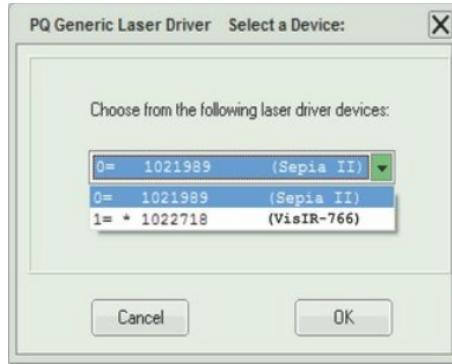


Figure 17: Select device

Cancel Back to the main window without any changes.

OK Change to the newly selected device. Note that this might lead to changes in the GUI, if a device of different type or configuration is selected. The serial number of the currently selected device is always displayed in the title bar of the software.

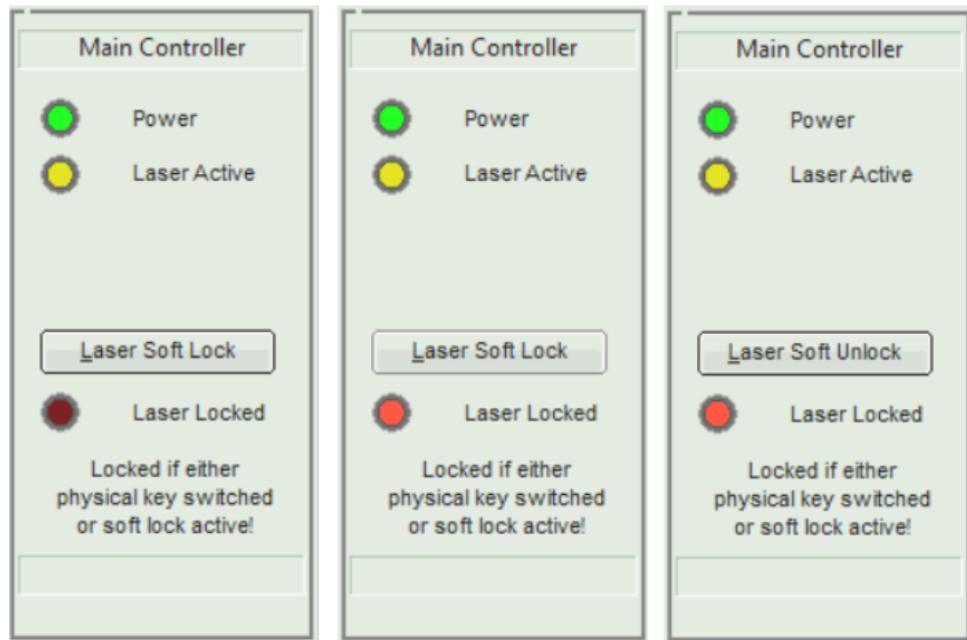
5.2.2 "Apply" and "Discard" Buttons

The **Apply** and **Discard** buttons **14** must be used to confirm or discard the configuration changes made in the GUI. The label of any control panel on which changes have been made but not yet committed, will be highlighted in orange as well as the **Apply** button. These highlights are retained until the changes are either applied or discarded.

5.2.3 "Main Controller" Control Panel - Soft Lock and Unlock of the VisUV/IR laser Module

The *VisUV/IR laser module* can be locked (no laser light emission) not only with the hardware key switch **3** on the front panel, but also via the GUI by clicking on the button labeled **Laser Soft Lock / Laser Soft Unlock** in the Main Controller panel, see **15** in Fig. 16.

The mechanism behind the soft lock is similar to that of an interrupt via the interlock loop. The soft lock can be used in USB and SEM mode.



WARNING

Soft locking the laser does not ensure eye safety!

The **Laser Unlocked** state is recognizable in the software by the **Laser Locked** indicator turning dark red (see [Fig. 18](#), left). In addition, the key switch indicator LED **4** on the *VisUV/IR laser module* has turned OFF.

The **Laser Locked** state is recognizable in the software by the **Laser Locked** indicator turning bright red. The button text could be either **Laser Soft Lock** in case the system was hard locked by key switch **3** or remote interlock circuit (see [Fig. 18](#), middle), or **Laser Soft Unlock** (see [Fig. 18](#), right) in case the system was soft locked (this even masks a hard lock state). In addition, the key switch indicator LED **4** on the *VisUV/IR laser module* has light up red.

Figure 18: VisUV/IR laser module locking status indicator

in the GUI: laser unlocked (left), laser hard locked (middle), laser soft locked (right)

NOTICE

The lock state indicated in the GUI may refresh with a slight delay (< 1 s) with respect to the hardware LED on the front panel of the *VisUV/IR laser module*.

Consider: The soft lock state is not persistently stored in the system. It is lost after power down / power up.

To unlock the system from any lock condition, a **manual reset** is needed. This manual reset is done by turning the laser key switch back into the **STBY** position. Laser emission can then be reactivated by turning the laser key switch into the **ON** position.

⚠ WARNING

Before unlocking the laser, please refer to chapter 1.3 for laser safety instructions.

Allow about 3 – 5 minutes warm-up time after unlocking the laser to reach a stable output power.

5.2.4 "VisUV/IR" Control Panel

Fig. 19 shows the laser control elements of the VisUV/IR control panel **16** (see Fig. 16) available for the *VisUV/IR laser module*.

NOTICE

The type of laser module connected is automatically detected and displayed at the bottom of the control panel.

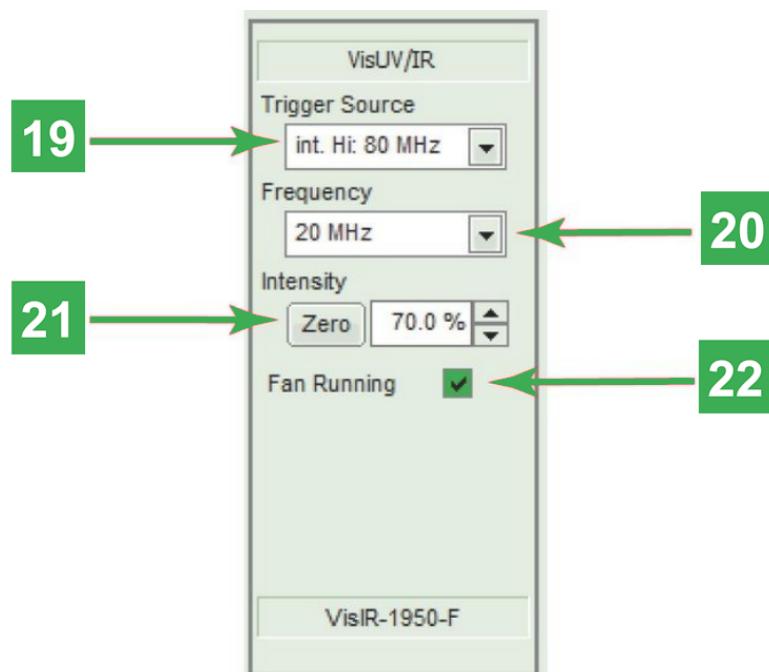


Figure 19: VisUV/IR laser control elements in the GUI

Trigger Source 19

- Use this selection box to choose the trigger source for the connected *VisUV/IR laser module*.
 - You can select one of the module's internal clocks by choosing **int. Hi: 80 MHz** or **int. Lo: 1 MHz**.
 - If an external trigger signal should be used, then select either **ext. (var.)** or **ext. (NIM)**, depending on the signal type (e.g., ext. (NIM) when using a NIM signal and ext. (var.) for other types of periodic signals).
 - Selecting **Off** as trigger source will turn the *VisUV/IR laser module* off.

Frequency / Trigger Level 20

- The label and type of this control element will change depending on the selected trigger source:
 - If one of the internal clocks is selected, this element will be a drop down selection box labeled **Frequency**. The repetition rates available in the selection box depend on the selected internal clock.
 - For **int. Hi: 80 MHz**, the choices are: 2.5, 5, 10, 20, 40, and 80 MHz
 - For **int. Lo: 1 MHz**, the choices are: 31.25, 62.5, 125, 250, 500 kHz, and 1 MHz
 - If the external trigger signal **ext. (var.)** is selected, the selection box turns into a spin edit box labeled **Trigger Level**. This box allows setting the threshold of the trigger signal in V.

Intensity 21

- The intensity of the laser head can be set on a freely adjustable scale from 0 to 100% with a step width of 0.1%.
- The **Zero** button provides an easy toggle between any intensity value and zero intensity. This is useful in case a laser needs to be switched off quickly. The button memorizes the intensity previously set. Pressing it again restores this intensity setting (and vice versa).

NOTICE

The optical output power of the *VisUV/IR laser module* does not correlate linearly with the intensity scale. Each laser head has a particular threshold value for laser emission, a particular slope and a particular maximal power value.

Fan Running 22

The high powered, versatile platform on which the *VisUV/IR laser module* is based has been specially designed for maximum heat dissipation. Internal thermoelectric (TE) cooler elements maintain the temperatures of diode elements, fiber amplifier stages, and collimating optics at a constant level.

Under normal conditions, allow about 2 to 5 minutes after start-up for the TE cooler system to reach the set-point temperature. For optimal output power stability, it is recommended to allow the *VisUV/IR laser module* to **warm-up for at least 20 min** while ensuring free air circulation around the whole module.

Toggling the check box **22** allows switching the cooling fans of the connected *VisUV/IR laser module* on or off.

PicoQuant recommends keeping the cooling fans running during operation of the *VisUV/IR laser module*. Yet in some cases, one might be interested in momentarily shutting off the fans in order to exclude any possible contribution of the device to mechanical vibrations on the setup. Due to thermal safety considerations, the fans may have a different minimal speed depending on the *VisUV/IR laser module* type. This minimal speed is set by PicoQuant during manufacturing and cannot be changed by the end user.

NOTICE

A permanently red blinking **ON LED**, even after a manual reset (see section 5.1), means that the cooling system is, for some reason, not able to maintain the internal set-point temperature. Should this occur, please check that the fan apertures are not obstructed and the fans are working properly. Please also check the ambient room temperature. High ambient room temperatures make it difficult for the TE cooler elements to maintain the set-point temperature.

5.2.5 "Presets" Control Panel

Two working configurations can be saved and recalled in the control panel labeled **Presets 17**, see [Fig. 16](#). Each preset stores all working parameters of the device. The currently applied configuration can be saved by clicking on the **Store Preset 1** or **Store Preset 2** button, see [Fig. 20](#).

NOTICE

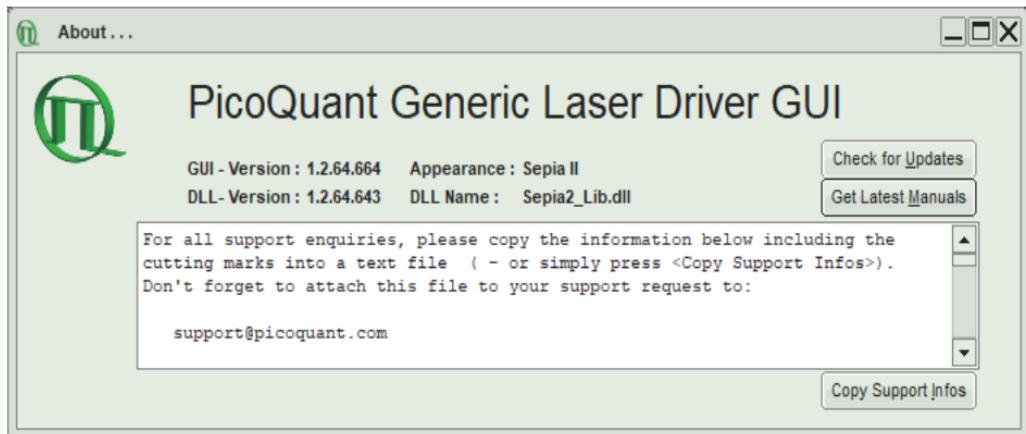
The presets are stored in the internal memory of the device and not on the host computer. They can therefore also be recalled if the device is connected to a different host computer.

Figure 20: Save a configuration

The pop up window **Inquire Preset Comment:** gives the possibility to include a short comment with a maximal length of 64 characters for each stored configuration, see [Fig. 21](#).

Figure 21: Edit comment for a preset

A stored configuration can simply be recalled by clicking on the button labeled **Recall Preset 1** or **Recall Preset 2** in the **Presets** window, see [Fig. 20](#).


NOTICE

Clicking on a **Recall Preset** button leads to an immediate configuration change without the need to manually apply the changes! The process itself can, however, take some time depending on the difference between current and recalled settings!

5.2.6 "About..." Button

Extended information about the device, including hardware version, serial number, operating hours, software and firmware version etc. can be brought up by clicking on the button labeled **About...** 18, see [Fig. 16](#).

For every support request its is recommend to save the entire information by clicking on the button labeled **Copy Support Infos**, see [Fig. 22](#), save the information as a plain text file, and send it per mail to support@picoquant.com.

Figure 22: The "About" window includes extended information about the status of the device

It is also possible to search for possible software updates by clicking on the button labeled **Check for Updates**, see [Fig. 22](#). If an update is available, a download link to the latest version will be provided. The button labeled **Get Latest Manuals** will also check online if newer versions of applicable manuals are available. An example of such a search result is shown in [Fig. 23](#).

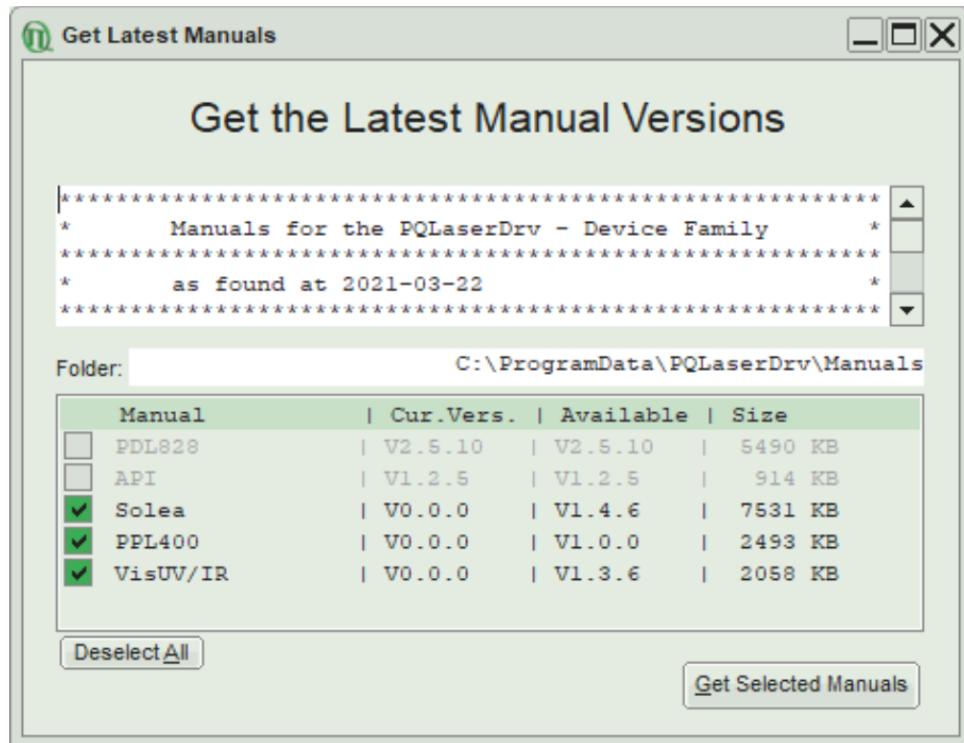


Figure 23: A potential result screen after searching for latest manual versions.

Lines corresponding to manuals that are up-to-date will be greyed out. Manuals that are currently not installed are listed as v0.0.0 in the column ***Cur. Vers.***.

To download the latest version of one or more manuals, tick the corresponding check-boxes and click on ***Get Selected Manuals***.

6. Trouble Shooting, Tips and Tricks

6.1 Power Stability

Please allow a warm-up time of about 20 minutes between powering up the laser module and activating it through the laser key switch. This thermal equilibration time will ensure the ideal stability of the optical output power.

6.2 Pulse Repetition Rate and Intensity Settings

Changes to the pulse repetition rate have an impact on the total average output power of the laser.

As opposed to directly pulsed laser diodes, e.g., *LDH* series from PicoQuant, the pulse energy of the fiber amplified *VisIR laser modules* and *VisUV laser modules* is not constant for all repetition rates. Consequently, the average output power does not depend linearly on the repetition rate.

The highest average power for the *VisIR-765-HC* (> 1.5 W) is achieved at a repetition rate of 20 MHz. A slight drop in pulse energy can occur at other frequencies.

6.3 Application examples

The *VisIR-765-HC* is primarily designed to be used as a depletion laser for STED microscopy. The optimal pulse duration for a STED depletion laser lies between the commonly accepted minimal value of 100 ps to 200 ps (ensuring a complete depletion process) and less than 1 ns (avoiding unnecessary overillumination and photobleaching of the probes). Consequently, the *VisIR-765-HC* is delivered with a pulse duration of a few 100 ps, typically around 0.5 ns.

The *VisUV laser modules* are ideally suited for applications such as fluorescence lifetime imaging (FLIM), Förster resonance energy transfer analysis (FLIM-FRET) or fluorescence correlation spectroscopy (FCS).

6.4 Trouble Shooting

You can use the following sequence of questions to diagnose common issues that result in the *VisUV/IR laser module* not generating laser light.

- Please check the key switch LED indicator **ON 4**:
 - Is the LED indicator **ON 4** lit **orange**?
 - if answer is **YES**: Is the laser power adjusted to a suitable level by the intensity control **21**?
 - if answer is **NO**: please check:
 - Is the key switch **3** set to the **ON** position?
 - Is the Remote Interlock **2** loop closed?
 - Is the LED indicator **ON 4 off**?
 - check if trigger status is not triggered (see section 5.2.4)
 - check the trigger source selector **19**:
 - *INT*: Is the selected frequency above an internally set limit? Check rear panel for a note.
 - *Ext*: Is the trigger level set correctly? Does the triggering signal meet the specifications of pulse width and amplitude?
 - Is the *Gate IN 11* in off state? (A short circuit on the *GATE IN* connector switches off the laser)
 - Is the LED indicator **ON 4 permanently flashing red**?
 - check the interlock condition: manually reset is necessary by turning the key switch **3** back on position **STBY**
 - LED indicator **ON 4** turns off: interlock condition is turned off. Turning key switch **3** back on **ON** position will lead to laser light emission.
 - LED indicator **ON 4** remains permanently blinking red: Heat dissipation is not sufficient. Please ensure that the **FAN** switch is turned **ON 22** and free air circulation is ensured.

7. Technical Data

7.1 Specifications

Mainframe

Power supply (external)	100 to 250 VAC, 50/60 Hz, max 130 Watt
Dimensions (w x d x h)	(352 x 336 x 82.5) mm
Weight	7.5 kg

Temperature at heatsink

When fans are disabled	70°C
------------------------	------

Internal Triggering

Range of repetition rates	80, 40, 20, 10, 5, 2.5 MHz (80 MHz base frequency) 1000, 500, 125, 62.5 or 31.25 kHz (1 MHz base frequency)
---------------------------	--

External NIM trigger input

Connector type	NIM-CAMAC
Trigger level	fixed trigger level at -400 mV
Range of repetition rates	< 1 Hz to 80 MHz

External TTL trigger input

Connector type	BNC
Amplitude	-5 V to +5 V (maximum limits)
Trigger level	adjustable between -1 V and +1 V
Range of repetition rates	< 1 Hz to 80 MHz

Gate

Connector type	SMA (female)
Trigger level	+5 V TTL, high active

Synchronization output

Connector type	SMA (female)
Amplitude	< -800 mV into 50 Ω (NIM)

Optical output Vis/R**1 beam output**

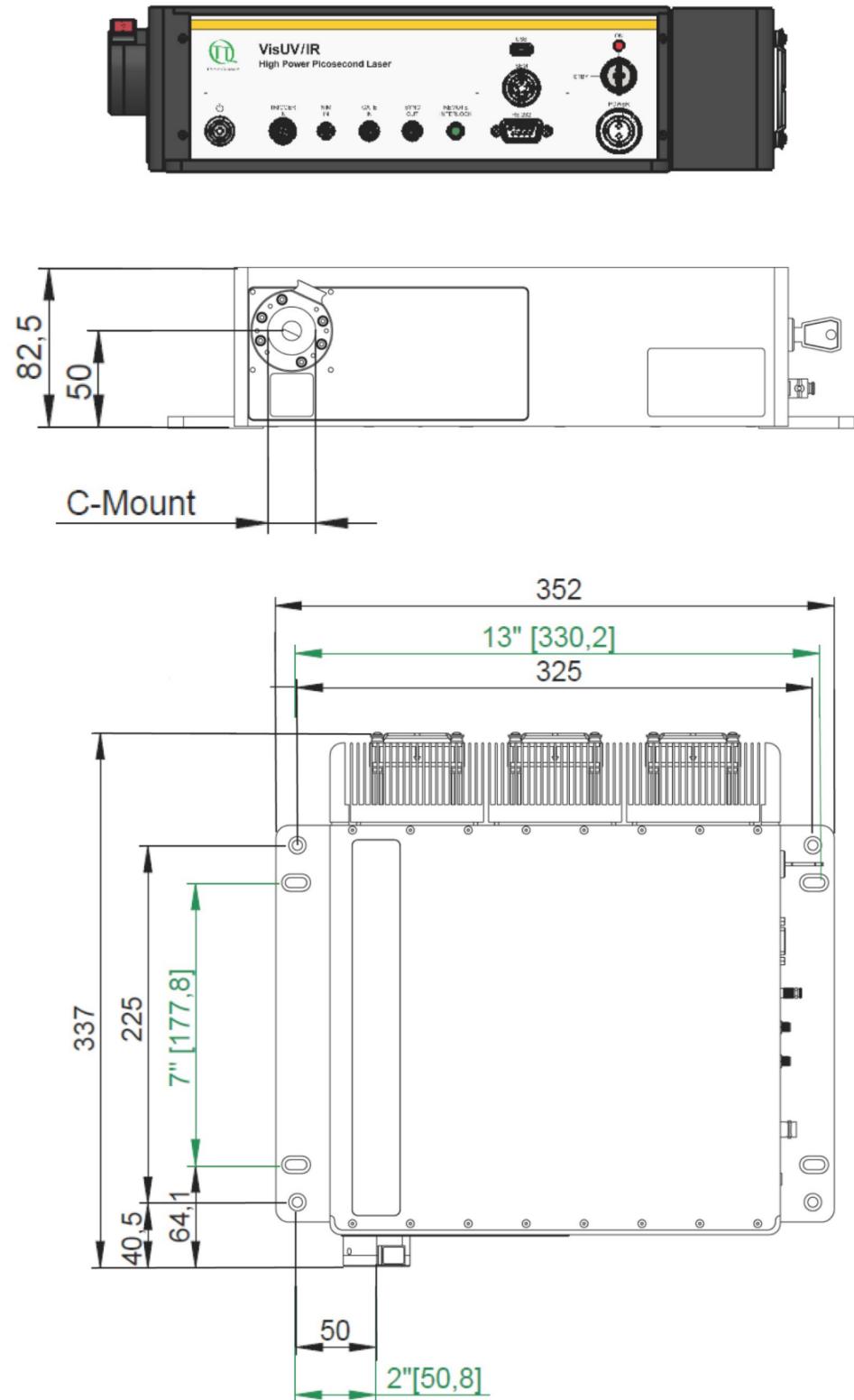
Available wavelengths	766 ± 1 nm, 774 ± 1 nm, 780 ± 1 nm 1064 ± 2 nm, 1531 ± 3 nm, 1550 ± 3 nm, 1950 ± 3 nm
Max. average output power	> 1.5 W
Pulse width (FWHM)	70 ps to 0.5 ns
Stability	< 3% rms
Beam Quality	$M^2 \sim 1,02$
Polarization	Vertical, > 1:60 to > 1:1000 (depending on model)

Optical output(s) VisUV**1, 2 or 3 beam outputs**

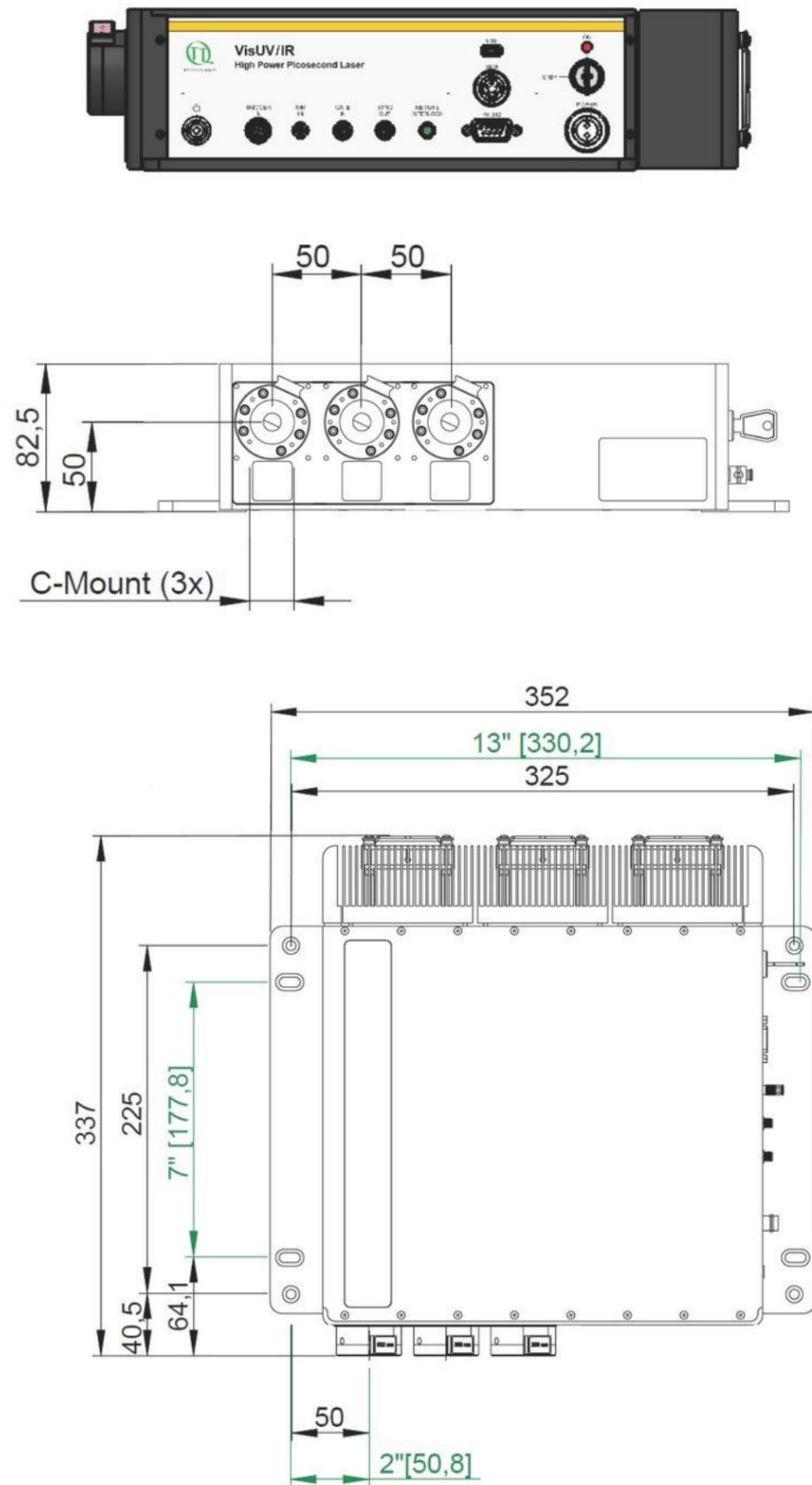
Available wavelengths ⁽¹⁾	266 ± 1 nm, 280 ± 1 nm, 295 ± 1 nm, 355 ± 1 nm, 488 ± 1 nm, 532 ± 2 nm, 561 ± 1 nm
Max. average output power	> 750 mW
Pulse width (FWHM)	< 85 ps to 1 ns
Stability	< 3% rms
Beam Quality	$M^2 \sim 1,02$
Polarization	Vertical, > 300:1

USB

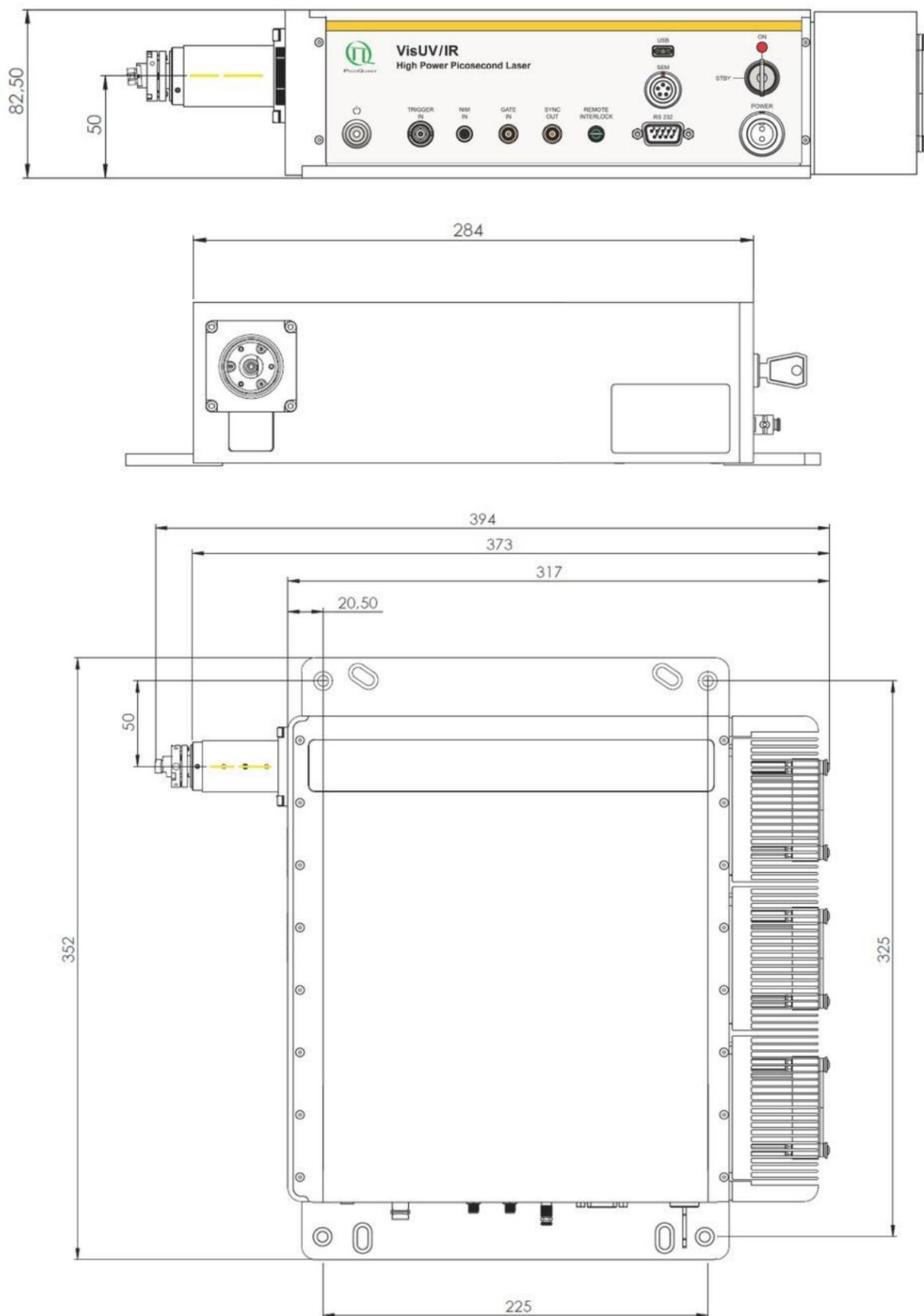
Connector type	USB Type-C
USB Version	2.0
Connector type	Windows TM 10


RS232

Connector type	Sub-D9 female
Baud rate	115200
Data	8 bit
Parity	none
Stop	1 bit


(1) Any of these wavelengths can be offered individually or in combination with one or both of the other wavelengths.

7.2 Dimensions


7.2.1 Dimensions of the *VisIR* laser Module with Shutter

7.2.2 Dimensions of the VisUV-266-355-532 laser Module with Shutter

7.2.3 Dimensions of the VisUV/VisIR laser Module with Filter Holder

8. Support

Should you encounter problems that require sending the device in for inspection / repair, please contact us first at: <https://support.picoquant.com> or support@picoquant.com and request an RMA number before shipping the device. Please include the serial number of your device. Observe precautions against static discharge under all circumstances during handling, packaging and shipping. Use original or equally protective packaging material. Inappropriate packaging voids any warranty.

9. Legal Terms

9.1 Copyright

Copyright of this manual and on-line documentation belongs to PicoQuant GmbH. No parts of it may be reproduced, translated, or transferred to third parties without written permission of PicoQuant.

9.2 Trademarks

Other products and corporate names appearing in this manual may or may not be registered trademarks or subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks. They are used here only for the purposes of identification or explanation and to the owner's benefit, without intent to infringe.

Retraction of Old Devices

Waste electrical products must not be disposed of with household waste. This equipment should be taken to your local recycling center for safe treatment. WEEE-Reg.-No. DE 96457402

10. Further Reading

10.1 PicoQuant Bibliography

PicoQuant maintains a database of publications mentioning PicoQuant devices. It can be found at our website <https://www.picoquant.com/scientific/references>. It is a valuable source if you would like to know which laboratories are using PicoQuant products or how broad the field of various applications is.

10.2 Download of Technical Notes, Application Notes

PicoQuant, along with our customers, continuously writes and publishes short documents about techniques, methods and applications that are possible with our hardware or software. The download section can be found at <https://www.picoquant.com/scientific/technical-and-application-notes>.

11. Appendix

11.1 Abbreviations

BNC	British Naval Connector or Bayonet Nut Connector or Bayonet Neill Concelman
CAMAC	Corporations and Markets Advisory Committee
FWHM	Full Width at Half Maximum
IEC	International Electrotechnical Commission
IR	Infra-red
IRF	Instrument Response Function
LED	Light Emitting Diode
MOFA	Master Oscillator Fiber Amplifier
NIM	Nuclear Instrumentation Methods
RMA	Return Merchandise Authorization
SMA	Sub-Miniature version A (connector type)
STED	STimulated Emission Depletion
TCSPC	Time-Correlated Single Photon Counting
TTL	Transistor-Transistor Logic
UV	Ultra-violet
VIS	Visible
WEEE	Waste Electrical and Electronic Equipment

11.2 Overview of Laser Warning Labels by Module Type

The tables in this sections provides an overview of laser warning labels by model type. Note that this list includes all *VisUV/IR laser modules* available at this manual was released.

VisUV laser modules

Model type	Warning label on the backside	Warning labels below aperture(s)
VisUV-266	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 10 \text{ mW}, \lambda = 266 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 266 nm</p>
VisUV-266-MIC	<p>INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 1.4 \text{ mW}, \lambda = 266 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 266 nm</p>
VisUV-266-355-532	<p>VISIBLE AND INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 10 \text{ mW}, \lambda = 266 \text{ nm}$ $P_o < 30 \text{ mW}, \lambda = 355 \text{ nm}$ $P_o < 1 \text{ W}, \lambda = 532 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 266 nm LASER APERTURE Wavelength = 355 nm LASER APERTURE Wavelength = 532 nm</p>
VisUV-280-560	<p>VISIBLE AND INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 1.4 \text{ mW}, \lambda = 280 \text{ nm}$ $P_o < 500 \text{ mW}, \lambda = 561 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 280 nm LASER APERTURE Wavelength = 561 nm</p>
VisUV-295-590	<p>VISIBLE AND INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 1.4 \text{ mW}, \lambda = 295 \text{ nm}$ $P_o < 500 \text{ mW}, \lambda = 589 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 295 nm LASER APERTURE Wavelength = 589 nm</p>

Model type	Warning label on the backside	Warning labels below aperture(s)
VisUV-355	<p>INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 30 \text{ mW}, \lambda = 355 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 355 nm</p>
VisUV-488	<p>WARNING - LASER RADIATION Avoid exposure to beam CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 500 \text{ mW}, \lambda = 488 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 488 nm</p>
VisUV-532	<p>LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 1 \text{ W}, \lambda = 532 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 532 nm</p>
VisUV-532-HP	<p>LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 3 \text{ W}, \lambda = 532 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 532 nm</p>
VisUV-560	<p>WARNING - LASER RADIATION Avoid exposure to beam CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 500 \text{ mW}, \lambda = 561 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 561 nm</p>

VisIR laser modules

Model type	Warning label on the backside	Warning labels below aperture(s)
VisIR-765	<p>INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 500 \text{ mW}, \lambda = 766 \text{ nm}$</p> <p>SEE MANUAL</p>	<p>LASER APERTURE Wavelength = 766 nm</p>

Model type	Warning label on the backside	Warning labels below aperture(s)
VisIR-765- HP "STED", VisIR-765-HC	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 10 \text{ W}, \lambda = 766 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-775	<p>INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 500 \text{ mW}, \lambda = 775 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-775-HP, VisIR-775-HC	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 10 \text{ W}, \lambda = 775 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-780	<p>INVISIBLE LASER RADIATION Avoid exposure to beam. CLASS 3B LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 500 \text{ mW}, \lambda = 780 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-1064, VisIR-1064-HP, VisIR-1064-HC	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 5 \text{ W}, \lambda = 1064 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-1530	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 5 \text{ W}, \lambda = 1531 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-1530-HP	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 6 \text{ W}, \lambda = 1531 \text{ nm}$</p> <p>SEE MANUAL</p>	

Model type	Warning label on the backside	Warning labels below aperture(s)
VisIR-1550	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 5 \text{ W}$, $\lambda = 1550 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-1550-HP, VisIR-1550-HC	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 6 \text{ W}$, $\lambda = 1550 \text{ nm}$</p> <p>SEE MANUAL</p>	
VisIR-1950, VisIR-1950-F	<p>INVISIBLE LASER RADIATION Avoid eye or skin exposure to direct or scattered radiation. CLASS 4 LASER PRODUCT</p> <p>Complies with IEC 60825-1:2014/21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.</p> <p>$P_o < 3 \text{ W}$, $\lambda = 1950 \text{ nm}$</p> <p>SEE MANUAL</p>	

11.3 Laser Delivery Report

The delivery report of your laser, including all final production test results for pulse shape, optical power, and linewidth is attached to this user manual. A PDF copy can be provided on request.

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
www.picoquant.com